Open Access
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 13
Published online 31 May 2010
How to cite this article Vet. Res. (2010) 41:62
  • Goddeeris B.M., Morrison W.I., Techniques for the generation, cloning, and characterization of bovine cytotoxic T cells specific for the protozoan Theileria parva, J. Tissue Cult. Methods (1988) 11:101–110. [CrossRef] [Google Scholar]
  • Hansen T.H., Huang S., Arnold P.L., Fremont D.H., Patterns of nonclassical MHC antigen presentation, Nat. Immunol. (2007) 8:563–568. [CrossRef] [PubMed] [Google Scholar]
  • Hashimoto K., Hirai M., Kurosawa Y., A gene outside the human MHC related to classical HLA class I genes, Science (1995) 269:693–695. [CrossRef] [PubMed] [Google Scholar]
  • Howard C.J., Sopp P., Parsons K.R., Bembridge G.P., Hall G., A new bovine leukocyte antigen cluster comprising two monoclonal antibodies, CC43 and CC118, possibly related to CD1, Vet. Immunol. Immunopathol. (1993) 39:69–76. [CrossRef] [PubMed] [Google Scholar]
  • Huang S., Gilfillan S., Cella M., Miley M.J., Lantz O., Lybarger L., et al., Evidence for MR1 antigen presentation to mucosal-associated invariant T cells, J. Biol. Chem. (2005) 280:21183–21193. [CrossRef] [PubMed] [Google Scholar]
  • Huang S., Gilfillan S., Kim S., Thompson B., Wang X., Sant A.J., et al., MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells, J. Exp. Med. (2008) 205:1201–1211. [CrossRef] [PubMed] [Google Scholar]
  • Huang S., Martin E., Kim S., Yu L., Soudais C., Fremont D.H., et al., MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution, Proc. Natl. Acad. Sci. USA (2009) 106:8290–8295. [Google Scholar]
  • Mackay C.R., Maddox J.F., Gogolin-Ewens K.J., Brandon M.R., Characterization of two sheep lymphocyte differentiation antigens, SBU-T1 and SBU-T6, Immunology (1985) 55:729–737. [PubMed] [Google Scholar]
  • Martin E., Treiner E., Duban L., Guerri L., Laude H., Toly C., et al., Stepwise development of MAIT cells in mouse and human, PLoS Biol. (2009) 7:e54. [CrossRef] [PubMed] [Google Scholar]
  • Masake R.A., Morrison W.I., Evaluation of the structural and functional changes in the lymphoid organs of Boran cattle infected with Trypanosoma vivax, Am. J. Vet. Res. (1981) 42:1738–1746. [PubMed] [Google Scholar]
  • Miley M.J., Truscott S.M., Yu Y.Y., Gilfillan S., Fremont D.H., Hansen T.H., Lybarger L., Biochemical features of the MHC-related protein 1 consistent with an immunological function, J. Immunol. (2003) 170:6090–6098. [PubMed] [Google Scholar]
  • Okamoto N., Kanie O., Huang Y.Y., Fujii R., Watanabe H., Shimamura M., Synthetic alpha-mannosyl ceramide as a potent stimulant for an NKT cell repertoire bearing the invariant Valpha19-Jalpha26 TCR alpha chain, Chem. Biol. (2005) 12:677–683. [CrossRef] [PubMed] [Google Scholar]
  • Reinink P., Van Rhijn I., The bovine T cell receptor alpha/delta locus contains over 400 V genes and encodes V genes without CDR2, Immunogenetics (2009) 61:541–549. [CrossRef] [PubMed] [Google Scholar]
  • Riegert P., Wanner V., Bahram S., Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene, J. Immunol. (1998) 161:4066–4077. [PubMed] [Google Scholar]
  • Shiina T., Ando A., Suto Y., Kasai F., Shigenari A., Takishima N., et al., Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21–q22, Genome Res. (2001) 11:789–802. [CrossRef] [PubMed] [Google Scholar]
  • Shimamura M., Huang Y.Y., Okamoto N., Watanabe Y., Murakami Y., Kinoshita T., et al., Glycolipids with nonreducing end alpha-mannosyl residues that have the potential to activate invariant Valpha19 NKT cells, Febs J. (2007) 274:2921–2932. [CrossRef] [PubMed] [Google Scholar]
  • Shimamura M., Huang Y.Y., Kobayashi M., Goji H., Altered production of immunoregulatory cytokines by invariant Valpha19 TCR-bearing cells dependent on the duration and intensity of TCR engagement, Int. Immunol. (2009) 21:179–185. [CrossRef] [PubMed] [Google Scholar]
  • Tilloy F., Treiner E., Park S.H., Garcia C., Lemonnier F., de la Salle H., et al., An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals, J. Exp. Med. (1999) 189:1907–1921. [Google Scholar]
  • Treiner E., Duban L., Bahram S., Radosavljevic M., Wanner V., Tilloy F., et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature (2003) 422:164–169. [CrossRef] [PubMed] [Google Scholar]
  • Treiner E., Duban L., Moura I.C., Hansen T., Gilfillan S., Lantz O., Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset, Microbes Infect. (2005) 7:552–559. [CrossRef] [PubMed] [Google Scholar]
  • Van Rhijn I., Koets A.P., Im J.S., Piebes D., Reddington F., Besra G.S., et al., The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d, J. Immunol. (2006) 176:4888–4893. [PubMed] [Google Scholar]
  • Yamaguchi H., Hirai M., Kurosawa Y., Hashimoto K., A highly conserved major histocompatibility complex class I-related gene in mammals, Biochem. Biophys. Res. Commun. (1997) 238:697–702. [CrossRef] [PubMed] [Google Scholar]
  • Yamaguchi H., Kurosawa Y., Hashimoto K., Expanded genomic organization of conserved mammalian MHC class I-related genes, human MR1 and its murine ortholog, Biochem. Biophys. Res. Commun. (1998) 250:558–564. [CrossRef] [PubMed] [Google Scholar]
  • Yamaguchi H., Hashimoto K., Association of MR1 protein, an MHC class I-related molecule, with beta(2)-microglobulin, Biochem. Biophys. Res. Commun. (2002) 290:722–729. [CrossRef] [PubMed] [Google Scholar]