Open Access
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 16
Published online 04 June 2010
How to cite this article Vet. Res. (2010) 41:63
  • Almeida R.A., Luther D.A., Park H.M., Oliver S.P., Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUAM), Vet. Microbiol. (2006) 115:183–191. [CrossRef] [PubMed] [Google Scholar]
  • Atrazhev A.M., Elliott J.F., Simplified desalting of ligation reactions immediately prior to electroporation into E. coli, Biotechniques (1996) 21:1024. [Google Scholar]
  • Baker E.N., Anderson B.F., Baker H.M., Day C.L., Haridas M., Norris G.E., et al., Three-dimensional structure of lactoferrin in various functional states, Adv. Exp. Med. Biol. (1994) 357:1–12. [PubMed] [Google Scholar]
  • Bannerman D.D., Paape M.J., Goff J.P., Kimura K., Lippolis J.D., Hope J.C., Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis, Vet. Res. (2004) 35:681–700. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Barnett T.C., Scott J.R., Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs, J. Bacteriol. (2002) 184:2181–2191. [CrossRef] [PubMed] [Google Scholar]
  • Bolken T.C., Franke C.A., Jones K.F., Zeller G.O., Jones C.H., Dutton E.K., Hruby D.E., Inactivation of the srtA gene in Streptococcus gordonii inhibits cell wall anchoring of surface proteins and decreases in vitro and in vivo adhesion, Infect. Immun. (2001) 69:75–80. [CrossRef] [PubMed] [Google Scholar]
  • Bradley A.J., Leach K.A., Breen J.E., Green L.E., Green M.J., Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales, Vet. Rec. (2007) 160:253–257. [CrossRef] [PubMed] [Google Scholar]
  • Caswell C.C., Lukomska E., Seo N.S., Hook M., Lukomski S., Scl1-dependent internalization of group A Streptococcus via direct interactions with the alpha2beta(1) integrin enhances pathogen survival and re-emergence, Mol. Microbiol. (2007) 64:1319–1331. [CrossRef] [PubMed] [Google Scholar]
  • Chaneton L., Tirante L., Maito J., Chaves J., Bussmann L.E., Relationship between milk lactoferrin and etiological agent in the mastitic bovine mammary gland, J. Dairy Sci. (2008) 91:1865–1873. [CrossRef] [PubMed] [Google Scholar]
  • Cheng Q., Stafslien D., Purushothaman S.S., Cleary P., The group B streptococcal C5a peptidase is both a specific protease and an invasin, Infect. Immun. (2002) 70:2408–2413. [CrossRef] [PubMed] [Google Scholar]
  • Cleary P.P., Prahbu U., Dale J.B., Wexler D.E., Handley J., Streptococcal C5a peptidase is a highly specific endopeptidase, Infect. Immun. (1992) 60:5219–5223. [PubMed] [Google Scholar]
  • Comfort D., Clubb R.T., A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria, Infect. Immun. (2004) 72:2710–2722. [CrossRef] [PubMed] [Google Scholar]
  • Dramsi S., Trieu-Cuot P., Bierne H., Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria, Res. Microbiol. (2005) 156:289–297. [CrossRef] [PubMed] [Google Scholar]
  • Egan S.A., Kurian D., Ward P.N., Hunt L., Leigh J.A., Identification of sortase A (SrtA) substrates in Streptococcus uberis: evidence for an additional hexapeptide (LPXXXD) sorting motif, J. Proteome Res. (2010) 9:1088–1095. [CrossRef] [PubMed] [Google Scholar]
  • Field T.R., Ward P.N., Pedersen L.H., Leigh J.A., The hyaluronic acid capsule of Streptococcus uberis is not required for the development of infection and clinical mastitis, Infect. Immun. (2003) 71:132–139. [CrossRef] [PubMed] [Google Scholar]
  • Finch J.M., Hill A.W., Field T.R., Leigh J.A., Local vaccination with killed Streptococcus uberis protects the bovine mammary gland against experimental intramammary challenge with the homologous strain, Infect. Immun. (1994) 62:3599–3603. [PubMed] [Google Scholar]
  • Harmon R.J., Schanbacher F.L., Ferguson L.C., Smith K.L., Changes in lactoferrin, immunoglobulin G, bovine serum albumin, and alpha-lactalbumin during acute experimental and natural coliform mastitis in cows, Infect. Immun. (1976) 13:533–542. [Google Scholar]
  • Hill A.W., Shears A.L., Hibbitt K.G., The elimination of serum-resistant Escherichia coli from experimentally infected single mammary glands of healthy cows, Res. Vet. Sci. (1978) 25:89–93. [PubMed] [Google Scholar]
  • Hill A.W., Leigh J.A., DNA fingerprinting of Streptococcus uberis: a useful tool for epidemiology of bovine mastitis, Epidemiol. Infect. (1989) 103:165–171. [CrossRef] [PubMed] [Google Scholar]
  • Hill A.W., Finch J.M., Field T.R., Leigh J.A., Immune modification of the pathogenesis of Streptococcus uberis mastitis in the dairy cow, FEMS Immunol. Med. Microbiol. (1994) 8:109–117. [CrossRef] [PubMed] [Google Scholar]
  • Hoeben D., Burvenich C., Eppard P.J., Byatt J.C., Hard D.L., Effect of bovine somatotropin on neutrophil functions and clinical symptoms during Streptococcus uberis mastitis, J. Dairy Sci. (1999) 82:1465–1481. [CrossRef] [PubMed] [Google Scholar]
  • Janulczyk R., Rasmussen M., Improved pattern for genome-based screening identifies novel cell wall-attached proteins in gram-positive bacteria, Infect. Immun. (2001) 69:4019–4026. [CrossRef] [PubMed] [Google Scholar]
  • Ji Y., McLandsborough L., Kondagunta A., Cleary P.P., C5a peptidase alters clearance and trafficking of group A streptococci by infected mice, Infect. Immun. (1996) 64:503–510. [PubMed] [Google Scholar]
  • Kharat A.S., Tomasz A., Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro, Infect. Immun. (2003) 71:2758–2765. [CrossRef] [PubMed] [Google Scholar]
  • Lalioui L., Pellegrini E., Dramsi S., Baptista M., Bourgeois N., Doucet-Populaire F., et al., The SrtA Sortase of Streptococcus agalactiae is required for cell wall anchoring of proteins containing the LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine, Infect. Immun. (2005) 73:3342–3350. [CrossRef] [PubMed] [Google Scholar]
  • Leigh J.A., Finch J.M., Field T.R., Real N.C., Winter A., Walton A.W., Hodgkinson S.M., Vaccination with the plasminogen activator from Streptococcus uberis induces an inhibitory response and protects against experimental infection in the dairy cow, Vaccine (1999) 17:851–857. [CrossRef] [PubMed] [Google Scholar]
  • Mazmanian S.K., Liu G., Ton-That H., Schneewind O., Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall, Science (1999) 285:760–763. [CrossRef] [PubMed] [Google Scholar]
  • Moshynskyy I., Jiang M., Fontaine M.C., Perez-Casal J., Babiuk L.A., Potter A.A., Characterization of a bovine lactoferrin binding protein of Streptococcus uberis, Microb. Pathog. (2003) 35:203–215. [CrossRef] [PubMed] [Google Scholar]
  • Moyes K.M., Drackley J.K., Morin D.E., Bionaz M., Rodriguez-Zas S.L., Everts R.E., et al., Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism, BMC Genomics (2009) 10:542. [CrossRef] [PubMed] [Google Scholar]
  • Navarre W.W., Schneewind O., Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiol. Mol. Biol. Rev. (1999) 63:174–229. [PubMed] [Google Scholar]
  • Paape M.J., Wergin W.P., Guidry A.J., Schultze W.D., Phagocytic defense of the ruminant mammary gland, Adv. Exp. Med. Biol. (1981) 137:555–578. [PubMed] [Google Scholar]
  • Pahlman L.I., Marx P.F., Morgelin M., Lukomski S., Meijers J.C., Herwald H., Thrombin-activatable fibrinolysis inhibitor binds to Streptococcus pyogenes by interacting with collagen-like proteins A, B, J. Biol. Chem. (2007) 282:24873–24881. [CrossRef] [PubMed] [Google Scholar]
  • Pallen M.J., Lam A.C., Antonio M., Dunbar K., An embarrassment of sortases – a richness of substrates?, Trends Microbiol. (2001) 9:97–102. [CrossRef] [PubMed] [Google Scholar]
  • Paterson G.K., Nieminen L., Jefferies J.M., Mitchell T.J., PclA, a pneumococcal collagen-like protein with selected strain distribution, contributes to adherence and invasion of host cells, FEMS Microbiol. Lett. (2008) 285:170–176. [CrossRef] [PubMed] [Google Scholar]
  • Persson K., Larsson I., Hallen Sandgren C., Effects of certain inflammatory mediators on bovine neutrophil migration in vivo and in vitro, Vet. Immunol. Immunopathol. (1993) 37:99–112. [CrossRef] [PubMed] [Google Scholar]
  • Rainard P., Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria, Vet. Microbiol. (1986) 11:387–392. [CrossRef] [PubMed] [Google Scholar]
  • Rasmussen M., Bjorck L., Unique regulation of SclB – a novel collagen-like surface protein of Streptococcus pyogenes, Mol. Microbiol. (2001) 40:1427–1438. [CrossRef] [PubMed] [Google Scholar]
  • Schalm O.W., Lasmanis J., Jain N.C., Conversion of chronic staphylococcal mastitis to acute gangrenous mastitis after neutropenia in blood and bone marrow produced by an equine anti-bovine leukocyte serum, Am. J. Vet. Res. (1976) 37:885–890. [PubMed] [Google Scholar]
  • Scott J.R., Barnett T.C., Surface proteins of gram-positive bacteria and how they get there, Annu. Rev. Microbiol. (2006) 60:397–423. [CrossRef] [PubMed] [Google Scholar]
  • Smith A.J., Ward P.N., Field T.R., Jones C.L., Lincoln R.A., Leigh J.A., MtuA, a lipoprotein receptor antigen from Streptococcus uberis, is responsible for acquisition of manganese during growth in milk and is essential for infection of the lactating bovine mammary gland, Infect. Immun. (2003) 71:4842–4849. [CrossRef] [PubMed] [Google Scholar]
  • Steijns J.M., van Hooijdonk A.C., Occurrence, structure, biochemical properties and technological characteristics of lactoferrin, Br. J. Nutr. (2000) 84Suppl. 1:S11–S17. [PubMed] [Google Scholar]
  • Tamura G.S., Hull J.R., Oberg M.D., Castner D.G., High-affinity interaction between fibronectin and the group B streptococcal C5a peptidase is unaffected by a naturally occurring four-amino-acid deletion that eliminates peptidase activity, Infect. Immun. (2006) 74:5739–5746. [CrossRef] [PubMed] [Google Scholar]
  • Taylor D.L., Ward P.N., Rapier C.D., Leigh J.A., Bowler L.D., Identification of a differentially expressed oligopeptide binding protein (OppA2) in Streptococcus uberis by representational difference analysis of cDNA, J. Bacteriol. (2003) 185:5210–5219. [CrossRef] [PubMed] [Google Scholar]
  • Ward P.N., Holden M.T., Leigh J.A., Lennard N., Bignell A., Barron A., et al., Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis , BMC Genomics (2009) 10:54. [CrossRef] [PubMed] [Google Scholar]
  • Wexler D.E., Chenoweth D.E., Cleary P.P., Mechanism of action of the group A streptococcal C5a inactivator, Proc. Natl. Acad. Sci. USA (1985) 82:8144–8148. [CrossRef] [Google Scholar]
  • Yamaguchi M., Terao Y., Ogawa T., Takahashi T., Hamada S., Kawabata S., Role of Streptococcus sanguinis sortase A in bacterial colonization, Microbes Infect. (2006) 8:2791–2796. [CrossRef] [PubMed] [Google Scholar]