Free Access
Issue
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 12
DOI https://doi.org/10.1051/vetres/2010043
Published online 23 July 2010
How to cite this article Vet. Res. (2010) 41:71
  • Addie D.D., Jarrett O., A study of naturally occurring feline coronavirus infections in kittens, Vet. Rec. (1992) 130:133–137. [CrossRef] [PubMed] [Google Scholar]
  • Addie D.D., Jarrett O., Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats, Vet. Rec. (2001) 148:649–653. [CrossRef] [PubMed] [Google Scholar]
  • Boom R., Sol C.J., Salimans M.M., Jansen C.L., Wertheim-van Dillen P.M., van der Noordaa J., Rapid and simple method for purification of nucleic acids, J. Clin. Microbiol. (1990) 28:495–503. [Google Scholar]
  • Chang H.W., de Groot R.J., Egberink H.F., Rottier P.J., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene, J. Gen. Virol. (2010) 91:415–420. [CrossRef] [PubMed] [Google Scholar]
  • Dewerchin H.L., Cornelissen E., Nauwynck H.J., Replication of feline coronaviruses in peripheral blood monocytes, Arch. Virol. (2005) 150:2483–2500. [CrossRef] [PubMed] [Google Scholar]
  • Foley J.E., Poland A., Carlson J., Pedersen N.C., Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments, J. Am. Vet. Med. Assoc. (1997) 210:1307–1312. [PubMed] [Google Scholar]
  • Gunn-Moore D.A., Gruffydd-Jones T.J., Harbour D.A., Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis, Vet. Microbiol. (1998) 62:193–205. [CrossRef] [PubMed] [Google Scholar]
  • Gunn-Moore D.A., Gunn-Moore F.J., Gruffydd-Jones T.J., Harbour D.A., Detection of FCoV quasispecies using denaturing gradient gel electrophoresis, Vet. Microbiol. (1999) 69:127–130. [CrossRef] [PubMed] [Google Scholar]
  • Gut M., Leutenegger C.M., Huder J.B., Pedersen N.C., Lutz H., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses, J. Virol. Methods (1999) 77:37–46. [CrossRef] [PubMed] [Google Scholar]
  • Haijema B.J., Volders H., Rottier P.J.M., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis, J. Virol. (2004) 78:3863–3871. [CrossRef] [PubMed] [Google Scholar]
  • Haijema B.J., Rottier P.J., de Groot R.J., Feline coronaviruses: a tale of two-faced types, Caister Academic Press, Norfolk, UK, 2007, pp. 183–203. [Google Scholar]
  • Herrewegh A.A., de Groot R.J., Cepica A., Egberink H.F., Horzinek M.C., Rottier P.J., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR, J. Clin. Microbiol. (1995) 33:684–689. [PubMed] [Google Scholar]
  • Herrewegh A.A., Mahler M., Hedrich H.J., Haagmans B.L., Egberink H.F., Horzinek M.C., et al., Persistence and evolution of feline coronavirus in a closed cat-breeding colony, Virology (1997) 234:349–363. [CrossRef] [PubMed] [Google Scholar]
  • Hickman M.A., Morris J.G., Rogers Q.R., Pedersen N.C., Elimination of feline coronavirus infection from a large experimental specific pathogen-free cat breeding colony by serologic testing and isolation, Feline Pract. (1995) 23:96–102. [Google Scholar]
  • Hohdatsu T., Okada S., Koyama H., Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses, Arch. Virol. (1991) 117:85–95. [CrossRef] [PubMed] [Google Scholar]
  • Hohdatsu T., Okada S., Ishizuka Y., Yamada H., Koyama H., The prevalence of types I and II feline coronavirus infections in cats, J. Vet. Med. Sci. (1992) 54:557–562. [PubMed] [Google Scholar]
  • Kipar A., Baptiste K., Barth A., Reinacher M., Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats, J. Feline Med. Surg. (2006) 8:69–72. [CrossRef] [PubMed] [Google Scholar]
  • Kipar A., Meli M.L., Failing K., Euler T., Gomes-Keller M.A., Schwartz D., et al., Natural feline coronavirus infection: Differences in cytokine patterns in association with the outcome of infection, Vet. Immunol. Immunopathol. (2006) 112:141–155. [CrossRef] [PubMed] [Google Scholar]
  • Kipar A., Meli M.L., Baptiste K.E., Bowker L.J., Lutz H., Sites of feline coronavirus persistence in healthy cats, J. Gen. Virol. (2010) 91:1698–1707. [CrossRef] [PubMed] [Google Scholar]
  • Lutz H., Lehmann R., Winkler G., Kottwitz B., Dittmer A., Wolfensberger C., Arnold P., Feline immunodeficiency virus in Switzerland: clinical aspects and epidemiology in comparison with feline leukemia virus and coronaviruses, Schweiz. Arch. Tierheilkd. (1990) 132:217–225 (in German). [PubMed] [Google Scholar]
  • Meli M., Kipar A., Müller C., Jenal K., Gönczi E., Borel N., et al., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats, J. Feline Med. Surg. (2004) 6:69–81. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen N.C., Boyle J.F., Floyd K., Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture, Am. J. Vet. Res. (1981) 42:363–367. [PubMed] [Google Scholar]
  • Pedersen N.C., Boyle J.F., Floyd K., Fudge A., Barker J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis, Am. J. Vet. Res. (1981) 42:368–377. [PubMed] [Google Scholar]
  • Pedersen N.C., Allen C.E., Lyons L.A., Pathogenesis of feline enteric coronavirus infection, J. Feline Med. Surg. (2008) 10:529–541. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen N.C., A review of feline infectious peritonitis virus infection: 1963–2008, J. Feline Med. Surg. (2009) 11:225–258. [CrossRef] [PubMed] [Google Scholar]
  • Poland A.M., Vennema H., Foley J.E., Pedersen N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus, J. Clin. Microbiol. (1996) 34:3180–3184. [PubMed] [Google Scholar]
  • Rottier P.J., Nakamura K., Schellen P., Volders H., Haijema B.J., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein, J. Virol. (2005) 79:14122–14130. [CrossRef] [PubMed] [Google Scholar]
  • Simons F.A., Vennema H., Rofina J.E., Pol J.M., Horzinek M.C., Rottier P.J., Egberink H.F., A mRNA PCR for the diagnosis of feline infectious peritonitis, J. Virol. Methods (2005) 124:111–116. [CrossRef] [PubMed] [Google Scholar]
  • Stoddart C.A., Scott F.W., Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence, J. Virol. (1989) 63:436–440. [PubMed] [Google Scholar]
  • Vennema H., Poland A., Foley J., Pedersen N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses, Virology (1998) 243:150–157. [CrossRef] [PubMed] [Google Scholar]