Open Access
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 12
Published online 21 May 2010
How to cite this article Vet. Res. (2010) 41:59
  • Barrow P.A., Immunity to experimental fowl typhoid in chickens induced by a virulence plasmid-cured derivative of Salmonella gallinarum, Infect. Immun. (1990) 58:2283–2288. [PubMed] [Google Scholar]
  • Barrow P.A., Huggins M.B., Lovell M.A., Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system, Infect. Immun. (1994) 62:4602–4610. [PubMed] [Google Scholar]
  • Basnet H.B., Kwon H.J., Cho S.H., Kim S.J., Yoo H.S., Park Y.H., et al., Reproduction of fowl typhoid by respiratory challenge with Salmonella Gallinarum, Avian Dis. (2008) 52:156–159. [CrossRef] [PubMed] [Google Scholar]
  • Boddicker J.D., Ledeboer N.A., Jagnow J., Jones B.D., Clegg S., Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster, Mol. Microbiol. (2002) 45:1255–1265. [CrossRef] [PubMed] [Google Scholar]
  • Boddicker J.D., Jones B.D., Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells, Infect. Immun. (2004) 72:2002–2013. [CrossRef] [PubMed] [Google Scholar]
  • Bouzoubaa K., Nagaraja K.V., Kabbaj F.Z., Newman J.A., Pomeroy B.S., Feasibility of using proteins from Salmonella gallinarum vs. 9R live vaccine for the prevention of fowl typhoid in chickens, Avian Dis. (1989) 33:385–391. [CrossRef] [PubMed] [Google Scholar]
  • Christensen J.P., Barrow P.A., Olsen J.E., Poulsen J.S., Bisgaard M., Correlation between viable counts of Salmonella Gallinarum in spleen and liver and the development of anaemia in chickens as seen in experimental fowl typhoid, Avian Pathol. (1996) 25:769–783. [CrossRef] [PubMed] [Google Scholar]
  • Crichton P.B., Yakubu D.E., Old D.C., Clegg S., Immunological and genetical relatedness of type-1 and type-2 fimbriae in salmonellas of serotypes Gallinarum Pullorum and Typhimurium, J. Appl. Bacteriol. (1989) 67:283–291. [PubMed] [Google Scholar]
  • Crouch S.P., Kozlowski R., Slater K.J., Fletcher J., The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity, J. Immunol. Methods (1993) 160:81–88. [CrossRef] [PubMed] [Google Scholar]
  • Danese P.N., Pratt L.A., Kolter R., Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture, J. Bacteriol. (2000) 182:3593–3596. [CrossRef] [PubMed] [Google Scholar]
  • Dorel C., Lejeune P., Rodrigue A., The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities?, Res. Microbiol. (2006) 157:306–314. [CrossRef] [PubMed] [Google Scholar]
  • Duguid J.P., Anderson E.S., Campbell I., Fimbriae and adhesive properties in Salmonellae, J. Pathol. Bacteriol. (1966) 92:107–138. [CrossRef] [PubMed] [Google Scholar]
  • Gogal R.M. Jr, Ahmed S.A., Larsen C.T., Analysis of avian lymphocyte proliferation by a new, simple, nonradioactive assay (lympho-pro), Avian Dis. (1997) 41:714–725. [CrossRef] [PubMed] [Google Scholar]
  • Griffin H.G., Barrow P.A., Construction of an aroA mutant of Salmonella serotype Gallinarum: its effectiveness in immunization against experimental fowl typhoid, Vaccine (1993) 11:457–462. [CrossRef] [PubMed] [Google Scholar]
  • Higgins S.E., Erf G.F., Higgins J.P., Henderson S.N., Wolfenden A.D., Gaona-Ramirez G., Hargis B.M., Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells, Poult. Sci. (2007) 86:2315–2321. [CrossRef] [PubMed] [Google Scholar]
  • Jeong J.H., Song M., Park S.I., Cho K.O., Rhee J.H., Choy H.E., Salmonella enterica serovar Gallinarum requires ppGpp for internalization and survival in animal cells, J. Bacteriol. (2008) 190:6340–6350. [CrossRef] [PubMed] [Google Scholar]
  • Jones M.A., Wigley P., Page K.L., Hulme S.D., Barrow P.A., Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens, Infect. Immun. (2001) 69:5471–5476. [CrossRef] [PubMed] [Google Scholar]
  • Kang H.Y., Dozois C.M., Tinge S.A., Lee T.H., Curtiss R. 3rd, Transduction-mediated transfer of unmarked deletion and point mutations through use of counterselectable suicide vectors, J. Bacteriol. (2002) 184:307–312. [CrossRef] [PubMed] [Google Scholar]
  • Kang H.Y., Srinivasan J., Curtiss R. 3rd, Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar Typhimurium vaccine, Infect. Immun. (2002) 70:1739–1749. [CrossRef] [PubMed] [Google Scholar]
  • Kim S.W., Moon K.H., Baik H.S., Kang H.Y., Kim S.K., Bahk J.D., et al., Changes of physiological and biochemical properties of Salmonella enterica serovar Typhimurium by deletion of cpxR and lon genes using allelic exchange method, J. Microbiol. Methods (2009) 79:314–320. [CrossRef] [PubMed] [Google Scholar]
  • Ledeboer N.A., Jones B.D., Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar Typhimurium on HEp-2 cells and chicken intestinal epithelium, J. Bacteriol. (2005) 187:3214–3226. [CrossRef] [PubMed] [Google Scholar]
  • McEwen J., Silverman P., Genetic analysis of Escherichia coli K-12 chromosomal mutants defective in expression of F-plasmid functions: identification of genes cpxA and cpxB, J. Bacteriol. (1980) 144:60–67. [PubMed] [Google Scholar]
  • Matsui H., Suzuki M., Isshiki Y., Kodama C., Eguchi M., Kikuchi Y., et al., Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar Typhimurium, Infect. Immun. (2003) 71:30–39. [CrossRef] [PubMed] [Google Scholar]
  • Nakayama S., Watanabe H., Identification of cpxR as a positive regulator essential for expression of the Shigella sonnei virF gene, J. Bacteriol. (1998) 180:3522–3528. [PubMed] [Google Scholar]
  • Nakayama S., Kushiro A., Asahara T., Tanaka R., Hu L., Kopecko D.J., Watanabe H., Activation of hilA expression at low pH requires the signal sensor CpxA, but not the cognate response regulator CpxR, in Salmonella enterica serovar Typhimurium, Microbiology (2003) 149:2809–2817. [Google Scholar]
  • Paulsen I.T., Beness A.M., Saier M.H. Jr, Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria, Microbiology (1997) 143:2685–2699. [CrossRef] [PubMed] [Google Scholar]
  • Pomeroy B.S., Nagaraja K.V., Fowl Typhoid, in: Calnek B.W., Barnes H.J., Beard C.W., Reid W.M., Yoder H.W. Jr(Eds.), Diseases of Poultry, 1991, Ames, Iowa, Iowa State University Press, pp. 87–99. [Google Scholar]
  • Qureschi M.A., Dietert R.R., Bacon L.D., Genetic variation in the recruitment and activation of chicken peritoneal macrophages, Proc. Soc. Exp. Biol. Med. (1986) 181:560–568. [PubMed] [Google Scholar]
  • Rana N., Kulshreshtha R.C., Cell-mediated and humoral immune responses to a virulent plasmid-cured mutant strain of Salmonella enterica serotype Gallinarum in broiler chickens, Vet. Microbiol. (2006) 115:156–162. [CrossRef] [PubMed] [Google Scholar]
  • Rahn A., Drummelsmith J., Whitfield C., Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae, J. Bacteriol. (1999) 181:2307–2313. [PubMed] [Google Scholar]
  • Reed I.J., Muench H., A simple method of estimating fifty percent endpoints, Am. J. Hyg. (1938) 27:493–497. [Google Scholar]
  • Robitaille G., Moineau S., St-Gelais D., Vadeboncoeur C., Britten M., Detection and quantification of capsular exopolysaccharides from Streptococcus thermophilus using lectin probes, J. Dairy Sci. (2006) 89:4156–4162. [CrossRef] [PubMed] [Google Scholar]
  • Rosu V., Chadfield M.S., Santona A., Christensen J.P., Thomsen L.E., Rubino S., Olsen J.E., Effects of crp deletion in Salmonella enterica serotype Gallinarum, Acta Vet. Scand. (2007) 49:14. [CrossRef] [PubMed] [Google Scholar]
  • Shah D.H., Lee M.J., Park J.H., Lee J.H., Eo S.K., Kwon J.T., Chae J.S., Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis, Microbiology (2005) 151:3957–3968. [CrossRef] [PubMed] [Google Scholar]
  • Shah D.H., Shringi S., Desai A.R., Heo E.J., Park J.H., Chae J.S., Effect of metC mutation on Salmonella Gallinarum virulence and invasiveness in 1-day-old White Leghorn chickens, Vet. Microbiol. (2007) 119:352–357. [CrossRef] [PubMed] [Google Scholar]
  • Smith H.W., The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observation on their interference effect, J. Hyg. (1956) 54:419–432. [CrossRef] [Google Scholar]
  • Takaya A., Suzuki M., Matsui H., Tomoyasu T., Sashinami H., Nakane A., Yamamoto T., Lona, stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice, Infect. Immun. (2003) 71:690–696. [CrossRef] [PubMed] [Google Scholar]
  • Takaya A., Tomoyasu T., Tokumitsu A., Morioka M., Yamamoto T., The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1, J. Bacteriol. (2002) 184:224–232. [CrossRef] [PubMed] [Google Scholar]
  • Torres-Cabassa A.S., Gottesman S., Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis, J. Bacteriol. (1987) 169:981–989. [PubMed] [Google Scholar]
  • Tsilibaris V., Maenhaut-Michel G., Van Melderen L., Biological roles of the Lon ATP-dependent protease, Res. Microbiol. (2006) 157:701–713. [CrossRef] [PubMed] [Google Scholar]
  • Wigley P., Hulme S.D., Bumstead N., Barrow P.A., In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus, Microbes Infect. (2002) 4:1111–1120. [CrossRef] [PubMed] [Google Scholar]
  • Wigley P., Hulme S., Powers C., Beal R., Smith A., Barrow P., Oral infection with the Salmonella enterica serovar Gallinarum 9R attenuated live vaccine as a model to characterise immunity to fowl typhoid in the chicken, BMC Vet. Res. (2005) 1:2. [CrossRef] [PubMed] [Google Scholar]
  • Wilson R.L., Elthon J., Clegg S., Jones B.D., Salmonella enterica serovars gallinarum and pullorum expressing Salmonella enterica serovar typhimurium type 1 fimbriae exhibit increased invasiveness for mammalian cells, Infect. Immun. (2000) 68:4782–4785. [CrossRef] [PubMed] [Google Scholar]
  • Wolfe A.J., Parikh N., Lima B.P., Zemaitaitis B., Signal integration by the two-component signal transduction response regulator CpxR, J. Bacteriol. (2008) 190:2314–2322. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A., Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli, J. Biol. Chem. (2005) 280:1448–1456. [CrossRef] [PubMed] [Google Scholar]
  • Zhang-Barber L., Turner A.K., Dougan G., Barrow P.A., Protection of chickens against experimental fowl typhoid using a nuoG mutant of Salmonella serotype Gallinarum, Vaccine (1998) 16:899–903. [CrossRef] [PubMed] [Google Scholar]