Open Access
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 11
Published online 29 July 2010
How to cite this article Vet. Res. (2010) 41:75
  • Ackermann M.R., Brogden K.A., Response of the ruminant respiratory tract to Mannheimia (Pasteurella) haemolytica, Microbes Infect. (2000) 2:1079–1088. [CrossRef] [PubMed] [Google Scholar]
  • Amato I., Ciapetti G., Pagani S., Marletta G., Satriano C., Baldini N., Granchi D., Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(epsilon-caprolactone) surfaces, Biomaterials (2007) 28:3668–3678. [CrossRef] [PubMed] [Google Scholar]
  • Barja-Fidalgo C., Coelho A.L., Saldanha-Gama R., Helal-Neto E., Mariano-Oliveira A., Freitas M.S., Disintegrins: integrin selective ligands which activate integrin-coupled signaling and modulate leukocyte functions, Braz. J. Med. Biol. Res. (2005) 38:1513–1520. [CrossRef] [PubMed] [Google Scholar]
  • Berton G., Lowell C.A., Integrin signalling in neutrophils and macrophages, Cell. Signal. (1999) 11:621–635. [CrossRef] [PubMed] [Google Scholar]
  • Bianchi S.M., Dockrell D.H., Renshaw S.A., Sabroe I., Whyte M.K., Granulocyte apoptosis in the pathogenesis and resolution of lung disease, Clin. Sci. (Lond.) (2006) 110:293–304. [CrossRef] [Google Scholar]
  • Broxterman H.J., Hoekman K., Direct activation of caspases by RGD-peptides may increase drug sensitivity of tumour cells, Drug Resist. Updat. (1999) 2:139–141. [CrossRef] [PubMed] [Google Scholar]
  • Carman C.V., Springer T.A., Integrin avidity regulation: are changes in affinity and conformation underemphasized?, Curr. Opin. Cell Biol. (2003) 15:547–556. [CrossRef] [PubMed] [Google Scholar]
  • Castel S., Pagan R., Mitjans F., Piulats J., Goodman S., Jonczyk A., et al., RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways, Lab. Invest. (2001) 81:1615–1626. [PubMed] [Google Scholar]
  • Chen L.W., Lin M.W., Hsu C.M., Different pathways leading to activation of extracellular signal-regulated kinase and p38 MAP kinase by formyl-methionyl-leucyl-phenylalanine or platelet activating factor in human neutrophils, J. Biomed. Sci. (2005) 12:311–319. [CrossRef] [PubMed] [Google Scholar]
  • Chun A.L., Moralez J.G., Webster T.J., Fenniri H., Helical rosette nanotubes: a biomimetic coating for orthopedics?, Biomaterials (2005) 26:7304–7309. [CrossRef] [PubMed] [Google Scholar]
  • Dos Santos C., Davidson D., Neutrophil chemotaxis to leukotriene B4 in vitro is decreased for the human neonate, Pediatr. Res. (1993) 33:242–246. [PubMed] [Google Scholar]
  • Fenniri H., Mathivanan P., Vidale K.L., Sherman D.M., Hallenga K., Wood K.V., Stowell J.G., Helical rosette nanotubes: design, self-assembly, and characterization, J. Am. Chem. Soc. (2001) 123:3854–3855. [CrossRef] [PubMed] [Google Scholar]
  • Fenniri H., Deng B.L., Ribbe A.E., Helical rosette nanotubes with tunable chiroptical properties, J. Am. Chem. Soc. (2002) 124:11064–11072. [CrossRef] [PubMed] [Google Scholar]
  • Fenniri H., Deng B.L., Ribbe A.E., Hallenga K., Jacob J., Thiyagarajan P., Entropically driven self-assembly of multichannel rosette nanotubes, Proc. Natl Acad. Sci. USA (2002) 99 (Suppl. 2):6487–6492. [CrossRef] [Google Scholar]
  • Giancotti F.G., Ruoslahti E., Integrin signaling, Science (1999) 285:1028–1032. [CrossRef] [PubMed] [Google Scholar]
  • Ginsberg M.H., Partridge A., Shattil S.J., Integrin regulation, Curr. Opin. Cell Biol. (2005) 17:509–516. [CrossRef] [PubMed] [Google Scholar]
  • Hii C.S., Stacey K., Moghaddami N., Murray A.W., Ferrante A., Role of the extracellular signal-regulated protein kinase cascade in human neutrophil killing of Staphylococcus aureus and Candida albicans and in migration, Infect. Immun. (1999) 67:1297–1302. [PubMed] [Google Scholar]
  • Hofmann U.B., Westphal J.R., Zendman A.J., Becker J.C., Ruiter D.J., van Muijen G.N., Expression and activation of matrix metalloproteinase-2 and its co-localization with membrane-type 1 matrix metalloproteinase correlate with melanoma progression, J. Pathol. (2000) 191:245–256. [CrossRef] [PubMed] [Google Scholar]
  • Huang C., Jacobson K., Schaller M.D., MAP kinases and cell migration, J. Cell Sci. (2004) 117:4619–4628. [CrossRef] [PubMed] [Google Scholar]
  • Journeay W.S., Suri S.S., Fenniri H., Singh B., High-aspect ratio nanoparticles in nanotoxicology, Integr. Environ. Assess. Manag. (2008) 4:128–129. [CrossRef] [PubMed] [Google Scholar]
  • Journeay W.S., Suri S.S., Moralez J.G., Fenniri H., Singh B., Low inflammatory activation by self-assembling Rosette nanotubes in human Calu-3 pulmonary epithelial cells, Small (2008) 4:817–823. [CrossRef] [PubMed] [Google Scholar]
  • Journeay W.S., Suri S.S., Moralez J.G., Fenniri H., Singh B., Rosette nanotubes show low acute pulmonary toxicity in vivo, Int. J. Nanomedicine (2008) 3:373–383. [PubMed] [Google Scholar]
  • Juliano R.L., Reddig P., Alahari S., Edin M., Howe A., Aplin A., Integrin regulation of cell signalling and motility, Biochem. Soc. Trans. (2004) 32:443–446. [CrossRef] [PubMed] [Google Scholar]
  • Klemke R.L., Cai S., Giannini A.L., Gallagher P.J., de Lanerolle P., Cheresh D.A., Regulation of cell motility by mitogen-activated protein kinase, J. Cell Biol. (1997) 137:481–492. [CrossRef] [PubMed] [Google Scholar]
  • Lawson M.A., Maxfield F.R., Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils, Nature (1995) 377:75–79. [CrossRef] [PubMed] [Google Scholar]
  • Lekeux P., BRDC and the modulation of lung inflammation, Vet. J. (2006) 171:14–15. [CrossRef] [PubMed] [Google Scholar]
  • Matute-Bello G., Martin T.R., Science review: apoptosis in acute lung injury, Crit. Care (2003) 7:355–358. [CrossRef] [PubMed] [Google Scholar]
  • Meszaros A.J., Reichner J.S., Albina J.E., Macrophage-induced neutrophil apoptosis, J. Immunol. (2000) 165:435–441. [PubMed] [Google Scholar]
  • Montet X., Funovics M., Montet-Abou K., Weissleder R., Josephson L., Multivalent effects of RGD peptides obtained by nanoparticle display, J. Med. Chem. (2006) 49:6087–6093. [CrossRef] [PubMed] [Google Scholar]
  • Moon C., Han J.R., Park H.J., Hah J.S., Kang J.L., Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways, Respir. Res. (2009) 10:18. [Google Scholar]
  • Narducci D., An introduction to nanotechnologies: what’s in it for us?, Vet. Res. Commun. (2007) 31 (Suppl. 1):131–137. [CrossRef] [PubMed] [Google Scholar]
  • Nopp A., Lundahl J., Stridh H., Caspase activation in the absence of mitochondrial changes in granulocyte apoptosis, Clin. Exp. Immunol. (2002) 128:267–274. [CrossRef] [PubMed] [Google Scholar]
  • Perl M., Chung C.S., Perl U., Biffl W.L., Cioffi W.G., Ayala A., Beneficial versus detrimental effects of neutrophils are determined by the nature of the insult, J. Am. Coll. Surg. (2007) 204:840–852; discussion 852–843. [CrossRef] [PubMed] [Google Scholar]
  • Pullikuth A.K., Catling A.D., Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective, Cell. Signal. (2007) 19:1621–1632. [CrossRef] [PubMed] [Google Scholar]
  • Quint J.K., Wedzicha J.A., The neutrophil in chronic obstructive pulmonary disease, J. Allergy Clin. Immunol. (2007) 119:1065–1071. [CrossRef] [PubMed] [Google Scholar]
  • Roberts M.S., Woods A.J., Shaw P.E., Norman J.C., ERK1 associates with alpha(v)beta 3 integrin and regulates cell spreading on vitronectin, J. Biol. Chem. (2003) 278:1975–1985. [CrossRef] [PubMed] [Google Scholar]
  • Roets E., Burvenich C., Diez-Fraile A., Noordhuizen-Stassen E.N., Evaluation of the role of endotoxin and cortisol on modulation of CD18 adhesion receptors in cows with mastitis caused by Escherichia coli, Am. J. Vet. Res. (1999) 60:534–540. [PubMed] [Google Scholar]
  • Sano J., Oguma K., Kano R., Yazawa M., Tsujimoto H., Hasegawa A., High expression of Bcl-xL in delayed apoptosis of canine neutrophils induced by lipopolysaccharide, Res. Vet. Sci. (2005) 78:183–187. [CrossRef] [PubMed] [Google Scholar]
  • Snowder G.D., Van Vleck L.D., Cundiff L.V., Bennett G.L., Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors, J. Anim. Sci. (2006) 84:1999–2008. [CrossRef] [PubMed] [Google Scholar]
  • Stupack D.G., Cho S.Y., Klemke R.L., Molecular signaling mechanisms of cell migration and invasion, Immunol. Res. (2000) 21:83–88. [CrossRef] [PubMed] [Google Scholar]
  • Suri S.S., Rakotondradany F., Myles A.J., Fenniri H., Singh B., The role of RGD-tagged helical rosette nanotubes in the induction of inflammation and apoptosis in human lung adenocarcinoma cells through the p38 MAPK pathway, Biomaterials (2009) 30:3084–3090. [CrossRef] [PubMed] [Google Scholar]
  • Sweeney J.F., Nguyen P.K., Omann G.M., Hinshaw D.B., Lipopolysaccharide protects polymorphonuclear leukocytes from apoptosis via tyrosine phosphorylation-dependent signal transduction pathways, J. Surg. Res. (1998) 74:64–70. [CrossRef] [PubMed] [Google Scholar]
  • Takagi J., Petre B.M., Walz T., Springer T.A., Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling, Cell (2002) 110:599–611. [CrossRef] [PubMed] [Google Scholar]
  • Tsukada H., Ying X., Fu C., Ishikawa S., McKeown-Longo P.J., Albelda S.M., et al., Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung, Circ. Res. (1995) 77:651–659. [PubMed] [Google Scholar]
  • Ulijn R.V., Smith A.M., Designing peptide based nanomaterials, Chem. Soc. Rev. (2008) 37:664–675. [CrossRef] [PubMed] [Google Scholar]
  • Van Oostveldt K., Dosogne H., Burvenich C., Paape M.J., Brochez V., Van den Eeckhout E., Flow cytometric procedure to detect apoptosis of bovine polymorphonuclear leukocytes in blood, Vet. Immunol. Immunopathol. (1999) 70:125–133. [CrossRef] [PubMed] [Google Scholar]
  • Vucic D., Fairbrother W.J., The inhibitor of apoptosis proteins as therapeutic targets in cancer, Clin. Cancer Res. (2007) 13:5995–6000. [CrossRef] [PubMed] [Google Scholar]
  • Wu W.S., Wu J.R., Hu C.T., Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species, Cancer Metastasis Rev. (2008) 27:303–314. [CrossRef] [PubMed] [Google Scholar]