Open Access
Issue
Vet. Res.
Volume 41, Number 4, July–August 2010
Number of page(s) 14
DOI https://doi.org/10.1051/vetres/2010019
Published online 09 April 2010
How to cite this article Vet. Res. (2010) 41:47
  • Acosta-Rodriguez E.V., Napolitani G., Lanzavecchia A., Sallusto F., Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin-17 producing human T helper cells, Nat. Immunol. (2007) 8:630–638. [CrossRef] [PubMed] [Google Scholar]
  • Adkins B., T-cell functions in newborn mice and humans, Immunol. Today (1999) 20:330–335. [CrossRef] [PubMed] [Google Scholar]
  • Allen G., Yeargan M., Costa L.R., Cross R., Major histocompatibility complex class I-restricted cytotoxic T-lymphocyte responses in horses infected with equine herpesvirus 1, J. Virol. (1995) 69:606–612. [PubMed] [Google Scholar]
  • Barrios C., Brandt C., Berney M., Lambert P.H., Siegrist C.A., Partial correction of the TH2/TH1 imbalance in neonatal murine responses to vaccine antigens through selective adjuvant effects, Eur. J. Immunol. (1996) 26:2666–2670. [CrossRef] [PubMed] [Google Scholar]
  • Boyd N.K., Cohen N.D., Lim W.S., Martens R.J., Chaffin M.K., Ball J.M., Temporal changes in cytokine expression of foals during the first month of life, Vet. Immunol. Immunopathol. (2003) 92:75–85. [CrossRef] [PubMed] [Google Scholar]
  • Breathnach C.C., Soboll G., Suresh M., Lunn D.P., Equine herpesvirus-1 infection induces IFN-gamma production by equine T lymphocyte subsets, Vet. Immunol. Immunopathol. (2005) 103:207–215. [CrossRef] [PubMed] [Google Scholar]
  • Breathnach C.C., Sturgill-Wright T., Stiltner J.L., Adams A.A., Lunn D.P., Horohov D.W., Foals are interferon-gamma deficient at birth, Vet. Immunol. Immunopathol. (2006) 112:199–209. [CrossRef] [PubMed] [Google Scholar]
  • DeMestre A., Noronha L., Wagner B., Antczak D., Split immunological tolerance to trophoblast, Int. J. Dev. Biol. (2010) 54:445–455. [CrossRef] [PubMed] [Google Scholar]
  • Delespesse G., Yang L.P., Ohshima Y., Demeure C., Shu U., Byun D.G., Sarfati M., Maturation of human neonatal CD4+ and CD8+ T lymphocytes into Th1/Th2 effectors, Vaccine (1998) 16:1415–1419. [CrossRef] [PubMed] [Google Scholar]
  • Falcone F.H., Zillikens D., Gibbs B.F., The 21st century renaissance of the basophil? Current insights into its role in allergic responses and innate immunity, Exp. Dermatol. (2006) 15:855–864. [CrossRef] [PubMed] [Google Scholar]
  • Flaminio M.J., Nydam D.V., Marquis H., Matychak M.B., Giguère S., Foal monocyte-derived dendritic cells become activated upon Rhodococcus equi infection, Clin. Vaccine Immunol. (2009) 16:176–183. [CrossRef] [PubMed] [Google Scholar]
  • Forsthuber T., Yip H.C., Lehmann P.V., Induction of TH1 and TH2 immunity in neonatal mice, Science (1996) 271:1728–1730. [CrossRef] [PubMed] [Google Scholar]
  • Garcia A.M., Fadel S.A., Cao S., Sarcotti M., T cell immunity in neonates, Immunol. Res. (2000) 22:177–190. [CrossRef] [PubMed] [Google Scholar]
  • Hawrylowicz C.M., O’Garra A.O., Potential role of interleukin-10 secreting regulatory T cells in allergy and asthma, Nat. Rev. Immunol. (2005) 5:271–283. [CrossRef] [PubMed] [Google Scholar]
  • Hines S.A., Stone D.M., Hines M.T., Alperin D.C., Knowles D.P., Norton L.K., et al., Clearance of virulent but not avirulent Rhodococcus equi from the lungs of adult horses is associated with intracytoplasmic gamma interferon production by CD4+ and CD8+ T lymphocytes, Clin. Diagn. Lab. Immunol. (2003) 10:208–215. [CrossRef] [PubMed] [Google Scholar]
  • Jacks S., Giguère S., Crawford P.C., Castleman W.L., Experimental infection of neonatal foals with Rhodococcus equi triggers adult-like gamma interferon induction, Clin. Vaccine Immunol. (2007) 14:669–677. [CrossRef] [PubMed] [Google Scholar]
  • Korn T., Bettelli E., Oukka M., Kuchroo V.K., IL-17 and Th17 cells, Annu. Rev. Immunol. (2009) 27:485–517. [CrossRef] [PubMed] [Google Scholar]
  • Kydd J., Antczak D.F., Allen W.R., Barbis D., Butcher G., Davis W., et al., Report of the first international workshop on equine leucocyte antigens, Cambridge, UK, July 1991, Vet. Immunol. Immunopathol. (1994) 42:3–60. [CrossRef] [PubMed] [Google Scholar]
  • Kydd J.H., Wattrang E., Hannant D., Pre-infection frequencies of equine herpesvirus-1 specific, cytotoxic T lymphocytes correlate with protection against abortion following experimental infection of pregnant mares, Vet. Immunol. Immunopathol. (2003) 96:207–217. [CrossRef] [PubMed] [Google Scholar]
  • Liu T., Nerren J., Liu M., Martens R., Cohen N., Basal and stimulus-induced cytokine expression is selectively impaired in peripheral blood mononuclear cells of newborn foals, Vaccine (2009) 27:674–683. [CrossRef] [PubMed] [Google Scholar]
  • Lunn D.P., Holmes M.A., Antczak D.F., Agerwal N., Baker J., Bendali-Ahcene S., et al., Report of the second equine leucocyte antigen workshop, Squaw valley, California, July 1995, Vet. Immunol. Immunopathol. (1998) 62:101–143. [CrossRef] [PubMed] [Google Scholar]
  • Marchant A., Goetghebuer T., Ota M.O., Wolfe I., Ceesay S.J., De Groote D., et al., Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guérin vaccination, J. Immunol. (1999) 163:2249–2255. [PubMed] [Google Scholar]
  • Mealey R.H., Stone D.M., Hines M.T., Alperin D.C., Littke M.H., Leib S.R., et al., Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: effect of IL-12, dose, and route, Vaccine (2007) 25:7582–7597. [CrossRef] [PubMed] [Google Scholar]
  • Min B., Prout M., Hu-Li J., Zhu J., Jankovic D., Morgan E.S., et al., Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite, J. Exp. Med. (2004) 200:507–517. [CrossRef] [PubMed] [Google Scholar]
  • Moore K.W., de Waal Malefyt R., Coffman R.L., O’Garra A., Interleukin-10 and the interleukin-10 receptor, Annu. Rev. Immunol. (2001) 19:683–765. [CrossRef] [PubMed] [Google Scholar]
  • Morein B., Blomqvist G., Hu K., Immune responsiveness in the neonatal period, J. Comp. Pathol. (2007) 137:S27–S31. [CrossRef] [PubMed] [Google Scholar]
  • Mosmann T.R., Coffman R.L., TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. (1989) 7:145–173. [CrossRef] [PubMed] [Google Scholar]
  • Oh K., Shen T., Le Gros G., Min B., Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils, Blood (2007) 109:2921–2927. [PubMed] [Google Scholar]
  • Paillot R., Daly J.M., Juillard V., Minke J.M., Hannant D., Kydd J.H., Equine interferon gamma synthesis in lymphocytes after in vivo infection and in vitro stimulation with EHV-1, Vaccine (2005) 23:4541–4551. [CrossRef] [PubMed] [Google Scholar]
  • Paillot R., Kydd J.H., Sindle T., Hannant D., Edlund-Toulemonde C., Audonnet J.C., et al., Antibody and IFN-gamma responses induced by a recombinant canarypox vaccine and challenge infection with equine influenza virus, Vet. Immunol. Immunopathol. (2006) 112:225–233. [CrossRef] [PubMed] [Google Scholar]
  • Paillot R., Daly J.M., Luce R., Montesso F., Davis-Poynter N., Hannant D., Kydd J.H., Frequency and phenotype of EHV-1 specific, IFN-gamma synthesesing lymphocytes in ponies: the effects of age, pregnancy and infection, Dev. Comp. Immunol. (2007) 31:202–214. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L.G., Castelruiz Y., Jacobsen S., Aasted B., Identification of monoclonal antibodies that cross-react with cytokines from different animal species, Vet. Immunol. Immunopathol. (2002) 88:111–122. [CrossRef] [PubMed] [Google Scholar]
  • Sheoran A.S., Timoney J.F., Holmes M.A., Karzenski S.S., Crisman M.V., Immunoglobulin isotypes in sera and nasal mucosal secretions and their neonatal transfer and distribution in horses, Am. J. Vet. Res. (2000) 61:1099–1105. [CrossRef] [PubMed] [Google Scholar]
  • Sokol C.L., Barton G.M., Farr A.G., Medzhitov R., A mechanism for the initiation of allergen-induced Thelper type 2 responses, Nat. Immunol. (2008) 9:310–318. [CrossRef] [PubMed] [Google Scholar]
  • Sponseller B.A., de Macedo M.M., Clark S.K., Gallup J.M., Jones D.E., Activation of peripheral blood monocytes results in more robust production of IL-10 in neonatal foals compared to adult horses, Vet. Immunol. Immunopathol. (2009) 127:167–173. [CrossRef] [PubMed] [Google Scholar]
  • Szabo S.J., Sullivan B.M., Peng S.L., Glimcher L.H., Molecular mechanisms regulating Th1 immune responses, Annu. Rev. Immunol. (2003) 21:713–758. [CrossRef] [PubMed] [Google Scholar]
  • Trinchieri G., Regulatory role of T cells producing both interferon gamma and interleukin 10 in persistent infection, J. Exp. Med. (2001) 194:F53–F57. [CrossRef] [PubMed] [Google Scholar]
  • Trinchieri G., Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nat. Rev. Immunol. (2003) 3:133–146. [CrossRef] [PubMed] [Google Scholar]
  • Vignali D.A., Collison L.W., Workman C.J., How regulatory T cells work, Nat. Rev. Immunol. (2008) 8:523–532. [CrossRef] [PubMed] [Google Scholar]
  • Wagner B., Radbruch A., Rohwer J., Leibold W., Monoclonal anti-equine IgE antibodies with specificity for different epitopes on the immunoglobulin heavy chain of native IgE, Vet. Immunol. Immunopathol. (2003) 92:45–60. [CrossRef] [PubMed] [Google Scholar]
  • Wagner B., Robeson J., McCracken M., Wattrang E., Antczak D.F., Horse cytokine/IgG1 fusion proteins – mammalian expression of biologically active cytokines and a system to verify antibody specificity to equine cytokines, Vet. Immunol. Immunopathol. (2005) 105:1–14. [CrossRef] [PubMed] [Google Scholar]
  • Wagner B., Hillegas J.M., Antczak D.F., A monoclonal antibody to equine interleukin 4, Vet. Immunol. Immunopathol. (2006) 110:363–367. [CrossRef] [PubMed] [Google Scholar]
  • Wagner B., Hillegas J.M., Brinker D.R., Horohov D.W., Antczak D.F., Characterization of monoclonal antibodies to equine interleukin-10 and detection of T regulatory 1 cells in horses, Vet. Immunol. Immunopathol. (2008) 122:57–64. [CrossRef] [PubMed] [Google Scholar]
  • Wagner B., Stokol T., Ainsworth D.M., Induction of interleukin-4 production in neonatal IgE+ cells after crosslinking of maternal IgE, Dev. Comp. Immunol. (2009) 34:436–444. [CrossRef] [PubMed] [Google Scholar]
  • Weiss A., Wiskocil R.L., Stobo J.D., The role of T3 surface molecules in the activation of human T cells: a two stimulus requirement for IL-2 production reflects events occurring at the pre-translational level, J. Immunol. (1984) 133:123–128. [PubMed] [Google Scholar]