Free Access
Vet. Res.
Volume 41, Number 3, May–June 2010
Number of page(s) 12
Published online 26 January 2010
How to cite this article Vet. Res. (2010) 41:34
  • Babu M.M., Priya M.L., Selvan A.T., Madera M., Gough J., Aravind L., Sankaran K., A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins, J. Bacteriol. (2006) 188:2761–2773. [CrossRef] [PubMed] [Google Scholar]
  • Beutler B.A., TLRs and innate immunity, Blood (2009) 113:1399–1407. [CrossRef] [PubMed] [Google Scholar]
  • Buwitt-Beckmann U., Heine H., Wiesmüller K.H., Jung G., Brock R., Akira S., Ulmer A.J., Toll-like receptor 6-independent signaling by diacylated lipopeptides, Eur. J. Immunol. (2005) 35:282–289. [CrossRef] [PubMed] [Google Scholar]
  • Buwitt-Beckmann U., Heine H., Wiesmüller K.H., Jung G., Brock R., Ulmer A.J., Lipopeptide structure determines TLR2 dependent cell activation level, FEBS J. (2005) 272:6354–6364. [CrossRef] [PubMed] [Google Scholar]
  • Buwitt-Beckmann U., Heine H., Wiesmüller K.H., Jung G., Brock R., Akira S., Ulmer A.J., TLR1- and TLR6-independent recognition of bacterial lipopeptides, J. Biol. Chem. (2006) 281:9049–9057. [CrossRef] [PubMed] [Google Scholar]
  • Diamantstein T., Ulmer A., Stimulation by cyclic GMP of lymphocytes mediated by soluble factor released from adherent cells, Nature (1975) 256:418–419. [CrossRef] [PubMed] [Google Scholar]
  • Dunne A., O’Neill L.A., The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense, Sci. STKE (2003) 2003:re3. [PubMed] [Google Scholar]
  • Farhat K., Riekenberg S., Heine H., Debarry J., Lang R., Mages J., et al., Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling, J. Leukoc. Biol. (2008) 83:692–701. [CrossRef] [PubMed] [Google Scholar]
  • Farhat K., Sauter K.S., Brcic M., Frey J., Ulmer A.J., Jungi T.W., The response of HEK293 cells transfected with bovine TLR2 to established pathogen-associated molecular patterns and to bacteria causing mastitis in cattle, Vet. Immunol. Immunopathol. (2008) 125:326–336. [CrossRef] [PubMed] [Google Scholar]
  • Fujita M., Into T., Yasuda M., Okusawa T., Hamahira S., Kuroki Y., et al., Involvement of leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of human toll-like receptor 2 in the recognition of diacylated lipoproteins and lipopeptides and Staphylococcus aureus peptidoglycans, J. Immunol. (2003) 171:3675–3683. [PubMed] [Google Scholar]
  • Gautam J.K., Ashish, Comeau L.D., Krueger J.K., Smith M.F. Jr, Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling, J. Biol. Chem. (2006) 281:30132–30142. [CrossRef] [PubMed] [Google Scholar]
  • Gay N.J., Gangloff M., Structure of toll-like receptors, Handb. Exp. Pharmacol. (2008) 183:181–200. [CrossRef] [PubMed] [Google Scholar]
  • Grabiec A., Meng G., Fichte S., Bessler W., Wagner H., Kirschning C.J., Human but not murine toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides, J. Biol. Chem. (2004) 279:48004–48012. [CrossRef] [PubMed] [Google Scholar]
  • Hajjar A.M., Ernst R.K., Tsai J.H., Wilson C.B., Miller S.I., Human toll-like receptor 4 recognizes host-specific LPS modifications, Nat. Immunol. (2002) 3:354–359. [CrossRef] [PubMed] [Google Scholar]
  • Hantke K., Braun V., Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane, Eur. J. Biochem. (1973) 34:284–296. [CrossRef] [PubMed] [Google Scholar]
  • Janeway C.A. Jr, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb. Symp. Quant. Biol. (1989) 54:1–13. [Google Scholar]
  • Jiang Z., Georgel P., Li C., Choe J., Crozat K., Rutschmann S., et al., Details of toll-like receptor:adapter interaction revealed by germ-line mutagenesis, Proc. Natl. Acad. Sci. USA (2006) 103:10961–10966. [CrossRef] [Google Scholar]
  • Meng G., Grabiec A., Vallon M., Ebe B., Hampel S., Bessler W., et al., Cellular recognition of tri-/di-palmitoylated peptides is independent from a domain encompassing the N-terminal seven leucine-rich repeat (LRR)/LRR-like motifs of TLR2, J. Biol. Chem. (2003) 278:39822–39829. [CrossRef] [PubMed] [Google Scholar]
  • Nakao Y., Funami K., Kikkawa S., Taniguchi M., Nishiguchi M., Fukumori Y., et al., Surface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells, J. Immunol. (2005) 174:1566–1573. [PubMed] [Google Scholar]
  • Nishiya T., Defranco A.L., Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the toll-like receptors, J. Biol. Chem. (2004) 279:19008–19017. [CrossRef] [PubMed] [Google Scholar]
  • Omueti K.O., Beyer J.M., Johnson C.M., Lyle E.A., Tapping R.I., Domain exchange between human toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination, J. Biol. Chem. (2005) 280:36616–36625. [CrossRef] [PubMed] [Google Scholar]
  • Pandey S., Agrawal D.K., Immunobiology of toll-like receptors: emerging trends, Immunol. Cell Biol. (2006) 84:333–341. [CrossRef] [PubMed] [Google Scholar]
  • Reitermann A., Metzger J., Wiesmüller K.H., Jung G., Bessler W.G., Lipopeptide derivatives of bacterial lipoprotein constitute potent immune adjuvants combined with or covalently coupled to antigen or hapten, Biol. Chem. Hoppe Seyler (1989) 370:343–352. [PubMed] [Google Scholar]
  • Roach J.C., Glusman G., Rowen L., Kaur A., Purcell M.K., Smith K.D., et al., The evolution of vertebrate toll-like receptors, Proc. Natl. Acad. Sci. USA (2005) 102:9577–9582. [CrossRef] [Google Scholar]
  • Sandor F., Latz E., Re F., Mandell L., Repik G., Golenbock D.T., et al., Importance of extra- and intracellular domains of TLR1 and TLR2 in NFkappa B signaling, J. Cell Biol. (2003) 162:1099–1110. [CrossRef] [PubMed] [Google Scholar]
  • Sauter K.S., Brcic M., Franchini M., Jungi T.W., Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS, Vet. Immunol. Immunopathol. (2007) 118:92–104. [CrossRef] [PubMed] [Google Scholar]
  • Takeda K., Takeuchi O., Akira S., Recognition of lipopeptides by toll-like receptors, J. Endotoxin. Res. (2002) 8:459–463. [PubMed] [Google Scholar]
  • Takeuchi O., Kawai T., Mühlradt P.F., Morr M., Radolf J.D., Zychlinsky A., et al., Discrimination of bacterial lipoproteins by toll-like receptor 6, Int. Immunol. (2001) 13:933–940. [CrossRef] [PubMed] [Google Scholar]
  • Takeuchi O., Sato S., Horiuchi T., Hoshino K., Takeda K., Dong Z., et al., Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins, J. Immunol. (2002) 169:10–14. [PubMed] [Google Scholar]
  • Weber A.N., Morse M.A., Gay N.J., Four N-linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion, J. Biol. Chem. (2004) 279:34589–34594. [CrossRef] [PubMed] [Google Scholar]
  • Werling D., Jann O.C., Offord V., Glass E.J., Coffey T.J., Variation matters: TLR structure and species-specific pathogen recognition, Trends Immunol. (2009) 30:124–130. [CrossRef] [PubMed] [Google Scholar]
  • Wu H.C., Tokunaga M., Tokunaga H., Hayashi S., Giam C.Z., Posttranslational modification and processing of membrane lipoproteins in bacteria, J. Cell. Biochem. (1983) 22:161–171. [CrossRef] [PubMed] [Google Scholar]
  • Yang W., Zerbe H., Petzl W., Brunner R.M., Günther J., Draing C., et al., Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder, Mol. Immunol. (2008) 45:1385–1397. [CrossRef] [PubMed] [Google Scholar]
  • Zähringer U., Lindner B., Inamura S., Heine H., Alexander C., TLR2 – promiscuous or specific?, A critical re-evaluation of a receptor expressing apparent broad specificity, Immunobiology (2008) 213:205–224. [Google Scholar]