Free Access
Issue |
Vet. Res.
Volume 41, Number 3, May–June 2010
|
|
---|---|---|
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/vetres/2010008 | |
Published online | 02 February 2010 | |
How to cite this article | Vet. Res. (2010) 41:36 |
- Alexandersen S., Zhang Z., Donaldson A.I., Aspects of the persistence of foot-and-mouth disease virus in animals – the carrier problem, Microbes Infect. (2002) 4:1099–1110. [CrossRef] [PubMed] [Google Scholar]
- Alexandersen S., Zhang Z., Donaldson A.I., Garland A.J.M., The pathogenesis and diagnosis of foot-and-mouth disease, J. Comp. Pathol. (2003) 129:1–36. [CrossRef] [PubMed] [Google Scholar]
- Bendz H., Ruhland S.C., Pandya M.J., Hainzl O., Riegelsberger S., Brauchle C., et al., Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling, J. Biol. Chem. (2007) 282:31688–31702. [CrossRef] [PubMed] [Google Scholar]
- Bendz H., Marincek B.-C., Momburg F., Ellwart J.W., Issels R.D., Nelson P.J., Noessner E., Calcium signaling in dendritic cells by human or mycobacterial Hsp70 is caused by contamination and is not required for Hsp70-mediated enhancement of cross-presentation, J. Biol. Chem. (2008) 283:26477–26483. [CrossRef] [PubMed] [Google Scholar]
- Binder R.J., Heat shock protein vaccines: from bench to bedside, Int. Rev. Immunol. (2006) 25:353–375. [CrossRef] [PubMed] [Google Scholar]
- Blachere N.E., Li Z., Chandawarkar R.Y., Suto R., Jaikaria N.S., Basu S., et al., Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity, J. Exp. Med. (1997) 186:1315–1322. [CrossRef] [PubMed] [Google Scholar]
- Bogers W.M.J.M., Bergmeier L.A., Ma J., Oostermeijer H., Wang Y., Kelly C.G., et al., A novel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection, AIDS (2004) 18:25–36. [CrossRef] [PubMed] [Google Scholar]
- Ciupitu A.-M.T., Petersson M., O’Donnell C.L., Williams K., Jindal S., Kiessling R., Welsh R.M., Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes, J. Exp. Med. (1998) 187:685–691. [CrossRef] [PubMed] [Google Scholar]
- DeNagel D.C., Pierce S.K., A case for chaperones in antigen processing, Immunol. Today (1992) 13:86–89. [CrossRef] [PubMed] [Google Scholar]
- Doel T.R., Natural and vaccine-induced immunity to foot-and-mouth disease: the prospects for improved vaccines, Rev. Sci. Tech. (1996) 15:883–911. [PubMed] [Google Scholar]
- Doody A.D.H., Kovalchin J.T., Mihalyo M.A., Hagymasi A.T., Drake C.G., Adler A.J., Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function, J. Immunol. (2004) 172:6087–6092. [PubMed] [Google Scholar]
- Ellis S.A., Staines K.A., Stear M.J., Hensen E.J., Morrison W.I., DNA typing for BoLA class I using sequence-specific primers (PCR-SSP), Eur. J. Immunogenet. (1998) 25:365–370. [CrossRef] [PubMed] [Google Scholar]
- Gerner W., Carr B.V., Wiesmuller K.H., Pfaff E., Saalmuller A., Charleston B., Identification of a novel foot-and-mouth disease virus specific T-cell epitope with immunodominant characteristics in cattle with MHC serotype A31, Vet. Res. (2007) 38:565–572. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gerner W., Hammer S.E., Wiesmuller K.H., Saalmuller A., Identification of major histocompatibility complex restriction and anchor residues of foot-and-mouth disease virus-derived bovine T-cell epitopes, J. Virol. (2009) 83:4039–4050. [CrossRef] [PubMed] [Google Scholar]
- Glew E.J., Carr B.V., Brackenbury L.S., Hope J.C., Charleston B., Howard C.J., Differential effects of bovine viral diarrhoea virus on monocytes and dendritic cells, J. Gen. Virol. (2003) 84:1771–1780. [CrossRef] [PubMed] [Google Scholar]
- Haug M., Dannecker L., Schepp C.P., Kwok W.W., Wernet D., Buckner J.H., et al., The heat shock protein Hsp70 enhances antigen-specific proliferation of human CD4+ memory T cells, Eur. J. Immunol. (2005) 35:3163–3172. [CrossRef] [PubMed] [Google Scholar]
- Haug M., Schepp C.P., Kalbacher H., Dannecker G.E., Holzer U., 70-kDa heat shock proteins: specific interactions with HLA-DR molecules and their peptide fragments, Eur. J. Immunol. (2007) 37:1053–1063. [CrossRef] [PubMed] [Google Scholar]
- Howard C.J., Morrison W.I., Bensaid A., Davis W., Eskra L., Gerdes J., et al., Summary of workshop findings for leukocyte antigens of cattle, Vet. Immunol. Immunopathol. (1991) 27:21–27. [CrossRef] [PubMed] [Google Scholar]
- Howard C.J., Sopp P., Brownlie J., Kwong L.S., Parsons K.R., Taylor G., Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells, J. Immunol. (1997) 159:5372–5382. [PubMed] [Google Scholar]
- Juleff N., Windsor M., Reid E., Seago J., Zhang Z., Monaghan P., et al., Foot-and-mouth disease virus persists in the light zone of germinal centres, PLoS ONE (2008) 3:e3434. [CrossRef] [PubMed] [Google Scholar]
- Juleff N., Windsor M., Lefevre E.A., Gubbins S., Hamblin P., Reid E., et al., Foot-and-mouth disease virus can induce a specific and rapid CD4+ T cell-independent neutralising and isotype class switched antibody response in naive cattle, J. Virol. (2009) JVI.02613–02608. [Google Scholar]
- Koelle D.M., Magaret A., McClurkan C.L., Remington M.L., Warren T., Teofilovici F., Wald A., Phase I dose-escalation study of a monovalent heat shock protein 70-herpes simplex virus type 2 (HSV-2) peptide-based vaccine designed to prime or boost CD8 T-cell responses in HSV-naive and HSV-2-infected subjects, Clin. Vaccine Immunol. (2008) 15:773–782. [CrossRef] [PubMed] [Google Scholar]
- Kumaraguru U., Gierynska M., Norman S., Bruce B.D., Rouse B.T., Immunization with chaperone-peptide complex induces low-avidity cytotoxic T lymphocytes providing transient protection against herpes simplex virus infection, J. Virol. (2002) 76:136–141. [CrossRef] [PubMed] [Google Scholar]
- Lakshmikuttyamma A., Selvakumar P., Anderson D.H., Datla R.S., Sharma R.K., Molecular cloning of bovine cardiac muscle heat-shock protein 70 kDa and its phosphorylation by cAMP-dependent protein kinase in vitro, Biochemistry (2004) 43:13340–13347. [CrossRef] [PubMed] [Google Scholar]
- Pack C.D., Kumaraguru U., Suvas S., Rouse B.T., Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with herpes simplex virus, Vaccine (2005) 23:3526–3534. [CrossRef] [PubMed] [Google Scholar]
- Panjwani N., Akbari O., Garcia S., Brazil M., Stockinger B., The HSC73 molecular chaperone: involvement in MHC class II antigen presentation, J. Immunol. (1999) 163:1936–1942. [PubMed] [Google Scholar]
- Parida S., Oh Y., Reid S.M., Cox S.J., Statham R.J., Mahapatra M., et al., Interferon-gamma production in vitro from whole blood of foot-and-mouth disease virus (FMDV) vaccinated and infected cattle after incubation with inactivated FMDV, Vaccine (2006) 24:964–969. [CrossRef] [PubMed] [Google Scholar]
- Peng M., Chen M., Ling N., Xu H., Qing Y., Ren H., Novel vaccines for the treatment of chronic HBV infection based on mycobacterial heat shock protein 70, Vaccine (2006) 24:887–896. [CrossRef] [PubMed] [Google Scholar]
- Randolph G.J., Jakubzick C., Qu C., Antigen presentation by monocytes and monocyte-derived cells, Curr. Opin. Immunol. (2008) 20:52–60. [PubMed] [Google Scholar]
- Saiz M., Nunez J.I., Jimenez-Clavero M.A., Baranowski E., Sobrino F., Foot-and-mouth disease virus: biology and prospects for disease control, Microbes Infect. (2002) 4:1183–1192. [CrossRef] [PubMed] [Google Scholar]
- SenGupta D., Norris P.J., Suscovich T.J., Hassan-Zahraee M., Moffett H.F., Trocha A., et al., Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II, J. Immunol. (2004) 173:1987–1993. [PubMed] [Google Scholar]
- Srivastava P.K., Therapeutic cancer vaccines, Curr. Opin. Immunol. (2006) 18:201–205. [CrossRef] [PubMed] [Google Scholar]
- Su C., Duan X., Wang X., Wang C., Cao R., Zhou B., Chen P., Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice, Vet. Microbiol. (2007) 124:256–263. [CrossRef] [PubMed] [Google Scholar]
- Tobian A.A., Canaday D.H., Boom W.H., Harding C.V., Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages, J. Immunol. (2004) 172:5277–5286. [PubMed] [Google Scholar]
- Tobian A.A., Canaday D.H., Harding C.V., Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells, J. Immunol. (2004) 173:5130–5137. [PubMed] [Google Scholar]
- van Eden W., van der Zee R., Prakken B., Heat-shock proteins induce T-cell regulation of chronic inflammation, Nat. Rev. Immunol. (2005) 5:318–330. [CrossRef] [PubMed] [Google Scholar]
- Wang R., Kovalchin J.T., Muhlenkamp P., Chandawarkar R.Y., Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens, Blood (2006) 107:1636–1642. [CrossRef] [PubMed] [Google Scholar]
- Werling D., Hope J.C., Chaplin P., Collins R.A., Taylor G., Howard C.J., Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells, J. Leukoc. Biol. (1999) 66:50–58. [PubMed] [Google Scholar]