Open Access
Vet. Res.
Volume 41, Number 2, March–April 2010
Number of page(s) 12
Published online 27 November 2009
How to cite this article Vet. Res. (2010) 41:23
  • Albiger B., Dahlberf S., Henriques-Normak B., Normak S., Role of the innate immune system in host defence against bacterial infections: focus in Toll-like receptors, J. Intern. Med. (2007) 262:511–528. [CrossRef] [Google Scholar]
  • Arce C., Ramírez-Boo M., Lucena C., Garrido J.J., Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium, Comp. Immunol. Microbiol. Infect. Dis. (2008) Doi:10.1016/j.cimid.2008.08.003. [Google Scholar]
  • Boyen F., Haesebrouck F., Maes D., Van Immerseel F., Ducatelle R., Pasmans F. , Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control, Vet. Microbiol. (2008) 130:1–19. [CrossRef] [PubMed] [Google Scholar]
  • Bueno S.M., González P.A., Schwebach J.R., Kalergis A.M., T cell immunity evasion by virulent Salmonella enterica, Immunol. Lett. (2007) 111:14–20. [CrossRef] [PubMed] [Google Scholar]
  • Chaouche-Drider N., Kaparakis M., Karrar A., Fernandez M.I., Carneiro L.A., Viala J., et al., A commensal Helicobacter sp. of the rodent intestinal flora activates TLR2 and NOD1 responses in epithelial cells, PLoS ONE (2009) 4:e5396. [CrossRef] [PubMed] [Google Scholar]
  • Darwin K.H., Miller V.L., Molecular basis of the interaction of Salmonella with the intestinal mucosa, Clin. Microbiol. Rev. (1999) 12:405–428. [PubMed] [Google Scholar]
  • Eckmann L., Kagnoff M.F., Cytokines in host defense against Salmonella, Microbes Infect. (2001) 3:1191–1200. [CrossRef] [PubMed] [Google Scholar]
  • Eckmann L., Sensor molecules in intestinal innate immunity against bacterial infection, Curr. Opin. Gastroenterol. (2006) 22:95–101. [CrossRef] [PubMed] [Google Scholar]
  • Fantuzzi G., Dinarello C.A., Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1), J. Clin. Immunol. (1999) 19:1–11. [CrossRef] [PubMed] [Google Scholar]
  • Finlay B.B., Brumell J.H., Salmonella interactions with host cells: in vitro to in vivo, Philos. Trans. R. Soc. Lond. B Biol. Sci. (2000) 355:623–631. [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Feliz C., Collazos J.A., Carvajal A., Vidal A.B., Aladuena A., Ramiro R., et al., Salmonella enterica infections in Spanish swine fattening units, Zoonoses Public Health (2007) 54:294–300. [CrossRef] [PubMed] [Google Scholar]
  • Grassl G.A., Finlay B.B., Pathogenesis of enteric Salmonella infections, Curr. Opin. Gastroenterol. (2008) 24:22–26. [CrossRef] [PubMed] [Google Scholar]
  • Hyland K.A., Kohrt L., Vulchanova L., Murtaugh M.P., Mucosal innate immune response to intragastric infection by Salmonella enterica serovar Choleraesuis, Mol. Immunol. (2006) 43:1890–1899. [CrossRef] [PubMed] [Google Scholar]
  • Jepson M.A., Clark M.A., The role of M cells in Salmonella infection, Microbes Infect. (2001) 3:1183–1190. [CrossRef] [PubMed] [Google Scholar]
  • Keshav S., Paneth cells: leukocyte-like mediators of innate immunity in the intestine, J. Leukoc. Biol. (2006) 80:500–508. [CrossRef] [PubMed] [Google Scholar]
  • Krishnan J., Selvarajoo K., Tsuchiya M., Lee G., Choi S., Toll-like receptor signal transduction, Exp. Mol. Med. (2007) 39:421–438. [PubMed] [Google Scholar]
  • Lalmanach A.-C., Lantier F., Host cytokine response and resistance to Salmonella infection, Microbes Infect. (1999) 1:719–726. [CrossRef] [PubMed] [Google Scholar]
  • Lara-Tejedo M., Sutterwala F.S., Ogura Y., Grant E.P., Bertin J., Coyle A.J., et al., Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis, J. Exp. Med. (2006) 203:1407–1412. [CrossRef] [PubMed] [Google Scholar]
  • Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method, Methods (2001) 25:402–408. [CrossRef] [PubMed] [Google Scholar]
  • Meurens F., Berri M., Auray G., Melo S., Levast B., Virlogeus-Payant I., et al., Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops, Vet. Res. (2009) 40:05. [CrossRef] [EDP Sciences] [Google Scholar]
  • Meyerholz D.K., Stabel T.J., Ackermann M.R., Carlson S.A., Jones B.D., Pohlenz J., Early epithelial invasion by Salmonella enterica serovar Typhimurium DT104 in the swine ileum, Vet. Pathol. (2002) 39:712–720. [CrossRef] [PubMed] [Google Scholar]
  • Meyland E., Tschopp J., Karin M., Intracellular pattern recognition receptors in the host response, Nature (2006) 442:39–44. [CrossRef] [PubMed] [Google Scholar]
  • Monack D.M., Hersh D., Ghori N., Bouley D., Zychlinsky A., Falkow S., Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model, J. Exp. Med. (2000) 192:249–258. [CrossRef] [PubMed] [Google Scholar]
  • Niess J., Reinecker H., Dendritic cells in the recognition of intestinal microbiota, Cell. Microbiol. (2006) 8:558–564. [CrossRef] [PubMed] [Google Scholar]
  • Niewold T.A., Veldhuizen E.J., van der Meulen J., Haagsman H.P., de Wit A.A., Smits M.A., et al., The early transcriptional response of pig small intestinal mucosa to invasion by Salmonella enterica serovar Typhimurium DT104, Mol. Immunol. (2007) 44:1316–1322. [CrossRef] [PubMed] [Google Scholar]
  • Oswald I.P., Role of intestinal epithelial cells in the innate immune defence of the pig intestine, Vet. Res. (2006) 37:359–368. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P., Determination of stable housekeeping genes differentially regulated target genes, and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations, Biotechnol. Lett. (2004) 26:509–515. [CrossRef] [PubMed] [Google Scholar]
  • Skjolaas K.A., Burkey T.E., Dritz S.S., Minton J.E., Effects of Salmonella enterica serovars Typhimurium (ST) and Choleraesuis (SC) on chemokine and cytokine expression in swine ileum and jejunal epithelial cells, Vet. Immunol. Immunopathol. (2006) 111:199–209. [CrossRef] [PubMed] [Google Scholar]
  • Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol. (2002) 3:RESEARCH0034. [Google Scholar]
  • Veldhuizen E.J., Hendriks H.G., Hogenkamp A., van Dijk A., Gaastra W., Tooten P.C., Haagsman H.P., Differential regulation of porcine beta-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I, Vet. Immunol. Immunopathol. (2006) 114:94–102. [CrossRef] [PubMed] [Google Scholar]
  • Veldhuizen E.J., van Dijk A., Tersteeg M.H., Kalkhove S.I., van der Meulen J., Niewold T.A., Haagsman H.P., Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection, Mol. Immunol. (2007) 44:276–283. [CrossRef] [PubMed] [Google Scholar]
  • Veldhuizen E.J.A., Koomen I., Ultee T., van Dijk A., Haagsman H.P., Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line, Vet. Microbiol. (2009) 136:69–75. [CrossRef] [PubMed] [Google Scholar]
  • Wick M.J., Living in the danger zone: innate immunity to Salmonella, Curr. Opin. Microbiol. (2004) 7:51–57. [CrossRef] [PubMed] [Google Scholar]
  • Yang D., Biragyn A., Kwak L.W., Oppenheim J.J., Mammalian defensins in immunity: more than just microbicidal, Trends Immunol. (2002) 23:291–296. [CrossRef] [PubMed] [Google Scholar]
  • Zeng H., Carlson A.Q., Guo Y., Yu Y., Collier-Hyams L.S., Madara J.L., et al., Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella, J. Immunol. (2003) 171:3668–3674. [PubMed] [Google Scholar]