Free Access
Issue
Vet. Res.
Volume 41, Number 2, March–April 2010
Number of page(s) 13
DOI https://doi.org/10.1051/vetres/2009071
Published online 27 November 2009
How to cite this article Vet. Res. (2010) 41:24
  • Bednarek M.A., Sauma S.Y., Gammon M.C., Porter G., Tamhankar S., Williamson A.R., Zweerink H.J., The minimum peptide epitope from the influenza virus matrix protein: extra and intracellular loading of HLA-A2, J. Immunol. (1991) 147:4047–4053. [PubMed] [Google Scholar]
  • Cheung Y.K., Cheng S.C.S., Sin F.W.Y., Chan K.T., Xie Y., Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope, Vaccine (2007) 25:6070–6077. [CrossRef] [PubMed] [Google Scholar]
  • Cinatl J. Jr., Michaelis M., Doerr H.W., The threat of avian influenza A (H5N1) part IV: Development of vaccines, Med. Microbiol. Immunol. (2007) 196:213–225. [CrossRef] [PubMed] [Google Scholar]
  • Cresswell P., Ackerman A.L., Giodini A., Peaper D.R., Wearsch P.A., Mechanisms of MHC class I-restricted antigen processing and cross-presentation, Immunol. Rev. (2005) 207:145–157. [CrossRef] [PubMed] [Google Scholar]
  • Dutoit V., Taub R.N., Papadopoulos K.P., Talbot S., Keohan M.L., Brehm M., et al., Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting, J. Clin. Invest. (2002) 110:1813–1822. [PubMed] [Google Scholar]
  • Epstein S.L., Tumpey T.M., Misplon J.A., Lo C.Y., Cooper L.A., Subbarao K., et al., DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice, Emerg. Infect. Dis. (2002) 8:796–801. [PubMed] [Google Scholar]
  • Epstein S.L., Kong W.P., Misplon J.A., Lo C.Y., Tumpey T.M., Xu L., Nabel G.J., Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein, Vaccine (2005) 23:5404–5410. [CrossRef] [PubMed] [Google Scholar]
  • Gnjatic S., Atanackovic D., Matsuo M., Jäger E., Lee S.Y., Valmori D., et al., Cross-presentation of HLA class IU epitopes from exogenous NY-ESO-1 polypeptides by nonprofessional APC, J. Immunol. (2003) 170:1191–1196. [PubMed] [Google Scholar]
  • Heiny A.T., Miotto O., Srinivasan K.N., Khan A.M., Zhang G.L., Brusic V., et al., Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets, PLoS ONE (2007) 2:e1190. [CrossRef] [PubMed] [Google Scholar]
  • Hiromoto Y., Yamazaki Y., Fukushima T., Saito T., Lindstrom S.E., Omoe K., et al., Evolutionary characterization of the six internal genes of H5N1 human influenza A virus, J. Gen. Virol. (2000) 81:1293–1303. [PubMed] [Google Scholar]
  • Horimoto T., Kawaoka Y., Strategies for developing vaccines against H5N1 influenza A viruses, Trends Mol. Med. (2006) 12:506–514. [CrossRef] [PubMed] [Google Scholar]
  • Huang C.H., Peng S., He L., Tsai Y.C., Boyd D.A., Hansen T.H., et al., Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope, Gene Ther. (2005) 12:1180–1186. [CrossRef] [PubMed] [Google Scholar]
  • Kodihalli S., Goto H., Kobasa D.L., Krauss S., Kawaoka Y., Webster R.G., DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice, J. Virol. (1999) 73:2094–2098. [PubMed] [Google Scholar]
  • Kodihalli S., Kobasa D.L., Webster R.G., Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines, Vaccine (2000) 18:2592–2599. [CrossRef] [PubMed] [Google Scholar]
  • Laddy D.J., Yan J., Corbitt N., Kobasa D., Kobinger G.P., Weiner D.B., Immunogenicity of novel consensus-based DNA vaccines against avian influenza, Vaccine (2007) 25:2984–2989. [CrossRef] [PubMed] [Google Scholar]
  • Leclerc D., Beauseigle D., Denis J., Morin H., Paré C., Lamarre A., Lapointe R., Proteasome-independent major histocompatibility complex class I cross-presentation mediated by papaya mosaic virus-like particles leads to expansion of specific human T cells, J. Virol. (2007) 81:1319–1326. [CrossRef] [PubMed] [Google Scholar]
  • Li K.S., Guan Y., Wang J., Smith G.J., Xu K.M., Duan L., et al., Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia, Nature (2004) 430:2009–2013. [Google Scholar]
  • Middleton D., Menchaca L., Rood H., Komerofsky R., New allele frequency database: http://www.allelefrequencies.net, Tissue Antigens (2003) 61:403–407. [CrossRef] [PubMed] [Google Scholar]
  • Nicholson K.G., Wood J.M., Zambon M., Influenza, Lancet (2003) 362:1733–1745. [CrossRef] [PubMed] [Google Scholar]
  • Parida R., Shaila M.S., Mukherjee S., Chandra N.R., Nayak R., Computational analysis of proteome of H5N1 avian influenza virus to define T cell epitopes with vaccine potential, Vaccine (2007) 25:7530–7539. [CrossRef] [PubMed] [Google Scholar]
  • Pascolo S., Bervas N., Ure J.M., Smith A.G., Lemonnier F.A., Pérarnau B., HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice, J. Exp. Med. (1997) 185:2043–2051. [CrossRef] [PubMed] [Google Scholar]
  • Rimmelzwaan G.F., Fouchier R.A., Osterhaus A.D., Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development, Curr. Opin. Biotechnol. (2007) 18:529–536. [CrossRef] [PubMed] [Google Scholar]
  • Roy S., Kobinger G.P., Lin J., Figueredo J., Calcedo R., Kobasa D., Wilson J.M., Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein, Vaccine (2007) 25:6845–6851. [CrossRef] [PubMed] [Google Scholar]
  • Ulmer J.B., Donnelly J.J., Parker S.E., Rhodes G.H., Felgner P.L., Dwarki V.J., et al., Heterologous protection against influenza by injection of DNA encoding a viral protein, Science (1993) 259:1745–1749. [CrossRef] [PubMed] [Google Scholar]
  • Wang M., Lamberth K., Harndahl M., Røder G., Stryhn A., Larsen M.V., et al., CTL epitopes for influenza A including the H5N1 bird flu: genome-pathogen-, and HLA-wide screening, Vaccine (2007) 25:2823–2831. [CrossRef] [PubMed] [Google Scholar]
  • Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y., Evolution and ecology of influenza A viruses, Microbiol. Rev. (1992) 56:152–179. [PubMed] [Google Scholar]
  • Wilson N.S., Villadangos J.A., Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications, Adv. Immunol. (2005) 86:241–305. [CrossRef] [PubMed] [Google Scholar]
  • Xie L.H., Sin F.W.Y., Cheng S.C.S., Cheung Y.K., Chan K.T., Xie Y., Xie Y., Activation of cytotoxic T lymphocytes against CML28-bearing tumors by dendritic cells transduced with a recombinant adeno-associated virus encoding the CML28 gene, Cancer Immunol. Immunother. (2008) 57:1029–1038. [CrossRef] [PubMed] [Google Scholar]
  • Yu Y.Y., Netuschi N., Lybarger L., Connolly J.M., Hansen T.H., Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells, J. Immunol. (2002) 168:3145–3149. [PubMed] [Google Scholar]