Free Access
Issue
Vet. Res.
Volume 40, Number 6, November-December 2009
Number of page(s) 10
DOI https://doi.org/10.1051/vetres/2009038
Published online 27 June 2009
How to cite this article Vet. Res. (2009) 40:55
References of  Vet. Res. (2009) 40:55
  1. Aarts H.J., Boumedine K.S., Nesme X., Cloeckaert A., Molecular tools for the characterisation of antibiotic-resistant bacteria, Vet. Res. (2001) 32:363–380 [CrossRef] [PubMed] [EDP Sciences].
  2. Aber R.C., Wennersten C., Moellering R.C. Jr., Antimicrobial susceptibility of flavobacteria, Antimicrob. Agents Chemother. (1978) 14:483–487 [PubMed].
  3. Alvarez B., Secades P., McBride M.J., Guijarro J.A., Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum, Appl. Environ. Microbiol. (2004) 70:581–587 [CrossRef] [PubMed].
  4. Bellais S., Naas T., Nordmann P., Genetic and biochemical characterization of CGB-1, an Ambler class B carbapenem-hydrolyzing beta-lactamase from Chryseobacterium gleum, Antimicrob. Agents Chemother. (2002) 46:2791–2796 [CrossRef] [PubMed].
  5. Bernardet J.F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P., Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978), Int. J. Syst. Bacteriol. (1996) 46:128–148.
  6. Bernardet J.F., Bowman J.P., The genus Flavobacterium, in: Dworkin M., Falkow S. (Eds.), The prokaryotes: a handbook on the biology of bacteria, New York, Springer, 2006, pp. 481–531.
  7. Bernardet J.F., Nakagawa Y., An introduction to the family Flavobacteriaceae, in: Dworkin M., Falkow S., Rosenberg E. (Eds.), The prokaryotes: a handbook on the biology of bacteria, New York, Springer, 2006, pp. 455–480.
  8. Beverly A.D., Antibiotic resistance of bacterial fish pathogens, J. World Aquac. Soc. (1994) 25:60–63 [CrossRef].
  9. Bruun M.S., Schmidt A.S., Madsen L., Dalsgaard I., Antimicrobial resistance patterns in Danish isolates of Flavobacterium pshychrophilum, Aquaculture (2000) 187:201–212 [CrossRef].
  10. Carson J., Schmidtke L.M., Munday B.L., Cytophaga johnsonae: a putative skin pathogen of juvenile farmed barramundi, Lates calcarifer Bloch, J. Fish Dis. (1993) 16:209–218 [CrossRef].
  11. Chakroun C., Grimont F., Urdaci M.C., Bernardet J.F., Fingerprinting of Flavobacterium psychrophilum isolates by ribotyping and plasmid profiling, Dis. Aquat. Organ. (1998) 33:167–177 [CrossRef] [PubMed].
  12. CLSI, Clinical and Laboratory Standards Institute, Performance standards for antimicrobial susceptibility testing: eighteenth informational supplement, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2008.
  13. Crump E.M., Perry M.B., Clouthier S.C., Kay W.W., Antigenic characterization of the fish pathogen Flavobacterium psychrophilum, Appl. Environ. Microbiol. (2001) 67:750–759 [CrossRef] [PubMed].
  14. Figueiredo H.C.P., Klesius P.H., Arias C.R., Evans J., Shoemaker C.A., Pereira D.J., Peixoto M.T.D., Isolation and characterization of strains of Flavobacterium columnare from Brazil, J. Fish Dis. (2005) 28:199–204 [CrossRef] [PubMed].
  15. Flemming L., Rawlings D., Chenia H., Phenotypic and molecular characterisation of fish-borne Flavobacterium johnsoniae-like isolates from aquaculture systems in South Africa, Res. Microbiol. (2007) 158:18–30 [CrossRef] [PubMed].
  16. Gomez-Consarnau L., Gonzalez J.M., Coll-Llado M., Gourdon P., Pascher T., Neutze R., et al., Light stimulates growth of proteorhodopsin-containing marine Flavobacteria, Nature (2007) 445:210–213 [CrossRef] [PubMed].
  17. Gupta R.S., Lorenzini E., Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species, BMC Evol. Biol. (2007) 7:71 [CrossRef] [PubMed].
  18. Izumi S., Aranishi F., Relationship between gyrA mutations and quinolone resistance in Flavobacterium psychrophilum isolates, Appl. Environ. Microbiol. (2004) 70:3968–3972 [CrossRef] [PubMed].
  19. Kriengkauykiat J., Porter E., Lomovskaya O., Wong-Beringer A., Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. (2005) 49:565–570 [CrossRef] [PubMed].
  20. Lane D.J., 16S/23S rRNA sequencing, in: Stackebrant E., Goodfellow M. (Eds.), Nucleic acid techniques in bacterial systematics, London, John Wiley & Sons Ltd., 1991, pp. 115–175.
  21. Li X.Z., Livermore D.M., Nikaido H., Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin, Antimicrob. Agents Chemother. (1994) 38:1732–1741 [PubMed].
  22. Lomovskaya O., Bostian K.A., Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use, Biochem. Pharmacol. (2006) 71:910–918 [CrossRef] [PubMed].
  23. Madsen L., Moller J.D., Dalsgaard I., Flavobacterium psychrophilum in rainbow trout, Oncorhynchus mykiss (Walbaum), hatcheries: studies on broodstock, eggs, fry, and environment, J. Fish Dis. (2005) 28:39–47 [CrossRef] [PubMed].
  24. Mamelli L., Amoros J.P., Pages J.M., Bolla J.M., A phenylalanine-arginine beta-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides, Int. J. Antimicrob. Agents (2003) 22:237–241 [CrossRef] [PubMed].
  25. McBride M.J., Kempf M.J., Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae, J. Bacteriol. (1996) 178:583–590 [PubMed].
  26. McGinnis A., Gaunt P., Santucci T., Simmons R., Endris R., In vitro evaluation of the susceptibility of Edwardsiella ictaluri, etiological agent of enteric septicemia in channel catfish, Ictalurus punctatus (Rafinesque), to florfenicol, J. Vet. Diagn. Invest. (2003) 15:576–579 [PubMed].
  27. McIntosh D., Cunningham M., Ji B., Fekete F.A., Parry E.M., Clark S.E., et al., Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254, J. Antimicrob. Chemother. (2008) 61:1221–1228 [CrossRef] [PubMed].
  28. Mesaros N., Glupczynski Y., Avrain L., Caceres N.E., Tulkens P.M., Van Bambeke F., A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa, J. Antimicrob. Chemother. (2007) 59:378–386 [CrossRef] [PubMed].
  29. Michel C., Matte-Tailliez O., Kerouault B., Bernardet J.F., Resistance pattern and assessment of phenicol agents' minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats, J. Appl. Microbiol. (2005) 99:323–332 [CrossRef] [PubMed].
  30. Naas T., Bellais S., Nordmann P., Molecular and biochemical characterization of a carbapenem-hydrolysing beta-lactamase from Flavobacterium johnsoniae, J. Antimicrob. Chemother. (2003) 51:267–273 [CrossRef] [PubMed].
  31. Nikaido H., Prevention of drug access to bacterial targets: permeability barriers and active efflux, Science (1994) 264:382–388 [CrossRef] [PubMed].
  32. Piddock L.J., Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria, Clin. Microbiol. Rev. (2006) 19:382–402 [CrossRef] [PubMed].
  33. Poole K., Efflux-mediated antimicrobial resistance, J. Antimicrob. Chemother. (2005) 56:20–51 [CrossRef] [PubMed].
  34. Poole K., Bacterial multidrug efflux pumps serve other functions, Microbe (2008) 3:179–185.
  35. Pumbwe L., Ueda O., Yoshimura F., Chang A., Smith R.L., Wexler H.M., Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance, J. Antimicrob. Chemother. (2006) 58:37–46 [CrossRef] [PubMed].
  36. Rintamaki-Kinnunen P., Bernardet J.F., Bloigu A., Yellow pigmented filamentous bacteria connected with farmed salmonid fish mortality, Aquaculture (1997) 149:1–14 [CrossRef].
  37. Schmidt A.S., Bruun M.S., Dalsgaard I., Pedersen K., Larsen J.L., Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms, Appl. Environ. Microbiol. (2000) 66:4908–4915 [CrossRef] [PubMed].
  38. Schreckenberger P.C., von Graevenitz A., Acinetobacter, Achromobacter, Alcaligenes, Moraxella, Methylobacterium, and other nonfermentative Gram-negative rods, in: Murray P.E., Barron E.J., Pfaller M.A., Tenorver F.C., Yolken R.H. (Eds.), Manual of clinical microbiology, 7th ed., Washington, DC, USA, American Society for Microbiology Press, 1999, pp. 539–560.
  39. Schwarz S., Chaslus-Dancla E., Use of antimicrobials in veterinary medicine and mechanisms of resistance, Vet. Res. (2001) 32:201–225 [CrossRef] [PubMed] [EDP Sciences].
  40. Sorum H., Antimicrobial drug resistance in fish pathogens, in: Aarestrup F.M. (Ed.), Antimicrobial resistance in bacteria of animal origin, Washington, DC, USA, ASM Press, 2005, pp. 213–218.
  41. Stratagene, pBK-CMV phagemid vector: Instructional manual, revision A, Stragene, La Jolla, CA, USA, 2008.
  42. Su H., Shao Z., Tkalec L., Blain F., Zimmermann J., Development of a genetic system for the transfer of DNA into Flavobacterium heparinum, Microbiology (2001) 147:581–589 [PubMed].
  43. Trevors J.T., A plasmid-containing Flavobacterium sp. isolated from freshwater sediment, J. Basic Microbiol. (1986) 26:189–191 [CrossRef].
  44. Ueda O., Wexler H.M., Hirai K., Shibata Y., Yoshimura F., Fujimura S., Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis, Antimicrob. Agents Chemother. (2005) 49:2807–2815 [CrossRef] [PubMed].
  45. Vatsos I.N., Thompson K.D., Adams A., Starvation of Flavobacterium psychrophilum in broth, stream water and distilled water, Dis. Aquat. Organ. (2003) 56:115–126 [CrossRef] [PubMed].
  46. Wakabayashi H., Horiuchi M., Bunya T., Hoshiai G., Outbreaks of cold-water disease in coho salmon in Japan, Fish Pathol. (1991) 26:211–212.
  47. Zhao Q., Li X.Z., Mistry A., Srikumar R., Zhang L., Lomovskaya O., Poole K., Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. (1998) 42:2225–2231 [PubMed].