Free Access
Vet. Res.
Volume 40, Number 1, January-February 2009
Number of page(s) 14
Published online 18 October 2008
How to cite this article Vet. Res. (2009) 40:06
References of  Vet. Res. (2009) 40:06
  1. Allan S.E., Passerini L., Bacchetta R., Crellin N., Dai M., Orban P.C., et al., The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs, J. Clin. Invest. (2005) 115:3276–3284 [CrossRef] [PubMed]. Bovine ex vivo immune regulatory cells Vet. Res. (2009) 40:06
  2. Asano M., Toda M., Sakaguchi N., Sakaguchi S., Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation, J. Exp. Med. (1996) 184:387–396 [CrossRef] [PubMed].
  3. Baecher-Allan C.,Wolf E., Hafler D.A., Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+ T cells, Clin. Immunol. (2005) 115:10–18 [CrossRef] [PubMed].
  4. Baldwin C.L., Sathiyaseelan T., Naiman B., White A.M., Brown R., Blumerman S., et al., Activation of bovine peripheral blood gammadelta T cells for cell division and IFN-gamma production, Vet. Immunol. Immunopathol. (2002) 87:251–259 [CrossRef] [PubMed].
  5. Bennett C.L., Christie J., Ramsdell F., Brunkow M.E., Ferguson P.J., Whitesell L., et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3, Nat. Genet. (2001) 27:20–21 [CrossRef] [PubMed].
  6. Birdsall H.H., Porter W.J., Trial J., Rossen R.D., Monocytes stimulated by 110-kDa fibronectin fragments suppress proliferation of anti-CD3-activated T cells, J. Immunol. (2005) 175:3347–3353 [PubMed].
  7. Brown W.C., Davis W.C., Choi S.H., Dobbelaere D.A., Splitter G.A., Functional and phenotypic characterization of WC1+ gamma/delta T cells isolated from Babesia bovis-stimulated T cell lines, Cell. Immunol. (1994) 153:9–27 [CrossRef] [PubMed].
  8. Brunkow M.E., Jeffery E.W., Hjerrild K.A., Paeper B., Clark L.B., Yasayko S.A., et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse, Nat. Genet. (2001) 27:68–73 [CrossRef] [PubMed].
  9. Chen W., Wahl S.M., TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression, Cytokine Growth Factor Rev. (2003) 14:85–89 [CrossRef] [PubMed].
  10. Collins R.A., Werling D., Duggan S.E., Bland A.P., Parsons K.R., Howard C.J., Gammadelta T cells present antigen to CD4+ alphabeta T cells, J. Leukoc. Biol. (1998) 63:707–714 [PubMed].
  11. Gavin M.A., Torgerson T.R., Houston E., DeRoos P., Ho W.Y., Stray-Pedersen A., et al., Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development, Proc. Natl. Acad. Sci. USA (2006) 103:6659–6664 [CrossRef] [PubMed].
  12. Hein W.R., Mackay C.R., Prominence of gamma delta T cells in the ruminant immune system, Immunol. Today (1991) 12:30–34 [CrossRef] [PubMed].
  13. Hori S., Nomura T., Sakaguchi S., Control of regulatory T cell development by the transcription factor Foxp3, Science (2003) 299:1057–1061 [CrossRef] [PubMed].
  14. Joosten S.A., van Meijgaarden K.E., Savage N.D., de Boer T., Triebel F., van der Wal A., et al., Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4, Proc. Natl. Acad. Sci. USA (2007) 104:8029–8034 [CrossRef] [PubMed].
  15. Kemp K., Kemp M., Kharazmi A., Ismail A., Kurtzhals J.A., Hviid L., Theander T.G., Leishmaniaspecific T cells expressing interferon-gamma (IFNgamma) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis, Clin. Exp. Immunol. (1999) 116:500–504 [CrossRef] [PubMed].
  16. Kennedy H.E., Welsh M.D., Bryson D.G., Cassidy J.P., Forster F.I., Howard C.J., et al., Modulation of immune responses to Mycobacterium bovis in cattle depleted of WC1(+) gamma delta T cells, Infect. Immun. (2002) 70:1488–1500 [CrossRef] [PubMed].
  17. Khattri R., Kasprowicz D., Cox T., Mortrud M., Appleby M.W., Brunkow M.E., et al., The amount of scurfin protein determines peripheral T cell number and responsiveness, J. Immunol. (2001) 167:6312–6320 [PubMed].
  18. Koets A.P., Rutten V.P., Hoek A., Bakker D., van Zijderveld F., Muller K.E., van Eden W., Heatshock protein-specific T-cell responses in various stages of bovine paratuberculosis, Vet. Immunol. Immunopathol. (1999) 70:105–115 [CrossRef] [PubMed].
  19. Kursar M., Bonhagen K., Fensterle J., Kohler A., Hurwitz R., Kamradt T., et al., Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses, J. Exp. Med. (2002) 196:1585–1592 [CrossRef] [PubMed].
  20. Lan R.Y., Ansari A.A., Lian Z.X., Gershwin M.E., Regulatory T cells: development, function and role in autoimmunity, Autoimmun. Rev. (2005) 4:351–363 [CrossRef] [PubMed].
  21. Machugh N.D., Mburu J.K., Carol M.J., Wyatt C.R., Orden J.A., Davis W.C., Identification of two distinct subsets of bovine gamma $\delta$ T cells with unique cell surface phenotype and tissue distribution, Immunology (1997) 92:340–345 [CrossRef] [PubMed].
  22. Martino A., Casetti R., Sacchi A., Poccia F., Central memory V$\gamma$9V$\delta$2 lymphocytes primed and expanded by bacillus Calmette-Guerin-infected dendritic cells kill mycobacterial-infected monocytes, J. Immunol. (2007) 179:3057–3064 [PubMed].
  23. Mochida-Nishimura K., Akagawa K.S., Rich E.A., Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocytemacrophage colony-stimulating factor, Cell. Immunol. (2001) 214:81–88 [CrossRef] [PubMed].
  24. Myers L., Croft M., Kwon B.S., Mittler R.S., Vella A.T., Peptide-specific CD8 T regulatory cells use IFN-gamma to elaborate TGF-beta-based suppression, J. Immunol. (2005) 174:7625–7632 [PubMed].
  25. Okragly A.J., Hanby-Flarida M., Baldwin C.L., Monocytes control gamma/delta T-cell responses by a secreted product, Immunology (1995) 86:599–605 [PubMed].
  26. Ordway D.J., Pinto L., Costa L., Martins M., Leandro C., Viveiros M., et al., Gamma delta T cell responses associated with the development of tuberculosis in health care workers, FEMS Immunol. Med. Microbiol. (2005) 43:339–350 [CrossRef] [PubMed].
  27. Peng G., Wang H.Y., Peng W., Kiniwa Y., Seo K.H., Wang R.F., Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway, Immunity (2007) 27:334–348 [CrossRef] [PubMed].
  28. Pfaffl M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res. (2001) 29:e45.
  29. Pfaffl M.W., Horgan G.W., Dempfle L., Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res. (2002) 30:e36.
  30. Piccirillo C.A., Letterio J.J., Thornton A.M., McHugh R.S., Mamura M., Mizuhara H., Shevach E.M., CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness, J. Exp. Med. (2002) 196:237–246 [CrossRef] [PubMed].
  31. Prasse A., Germann M., Pechkovsky D.V., Markert A., Verres T., StahlM., et al., IL-10-producing monocytes differentiate to alternatively activated macrophages and are increased in atopic patients, J. Allergy Clin. Immunol. (2007) 119:464–471 [CrossRef] [PubMed].
  32. Rhodes S.G., Hewinson R.G., Vordermeier H.M., Antigen recognition and immunomodulation by gamma delta T cells in bovine tuberculosis, J. Immunol. (2001) 166:5604–5610 [PubMed].
  33. Rogers A.N., Vanburen D.G., Hedblom E.E., Tilahun M.E., Telfer J.C., Baldwin C.L., $\gamma\delta$ T cell function varies with the expressed WC1 coreceptor, J. Immunol. (2005) 174:3386–3393 [PubMed].
  34. Roncador G., Brown P.J., Maestre L., Hue S., Martinez-Torrecuadrada J.L., Ling K.L., et al., Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level, Eur. J. Immunol. (2005) 35:1681–1691 [CrossRef] [PubMed].
  35. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J. Immunol. (1995) 155:1151–1164 [PubMed].
  36. Sakaguchi S., Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self, Nat. Immunol. (2005) 6:345–352 [CrossRef] [PubMed].
  37. Sathiyaseelan T., Rogers A., Baldwin C.L., Response of bovine $\gamma\delta$ T cells to activation through CD3, Vet. Immunol. Immunopathol. (2002) 90:155–168 [CrossRef] [PubMed].
  38. Seo K.S., Lee S.U., Park Y.H., Davis W.C., Fox L.K., Bohach G.A., Long-term staphylococcal enterotoxin C1 exposure induces soluble factor-mediated immunosuppression by bovine CD4+ and CD8+ T cells, Infect. Immun. (2007) 75:260–269 [CrossRef] [PubMed].
  39. Skeen M.J., Rix E.P., Freeman M.M., Ziegler H.K., Exaggerated proinflammatory and Th1 responses in the absence of $\gamma\delta$ T cells after infection with Listeria monocytogenes, Infect. Immun. (2001) 69:7213–7223 [CrossRef] [PubMed].
  40. Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., et al., Immunologic selftolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state, Int. Immunol. (1998) 10:1969–1980 [CrossRef] [PubMed].
  41. Wang J., Ioan-Facsinay A., van der Voort E.I., Huizinga T.W., Toes R.E., Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells, Eur. J. Immunol. (2007) 37:129–138 [CrossRef] [PubMed].
  42. Zheng S.G., Wang J.H., Gray J.D., Soucier H., Horwitz D.A., Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10, J. Immunol. (2004) 172:5213–5221 [PubMed].
  43. Ziegler S.F., FOXP3: of mice and men, Annu. Rev. Immunol. (2006) 24:209–226 [CrossRef] [PubMed].