Free Access
Vet. Res.
Volume 35, Number 6, November-December 2004
Page(s) 681 - 700
How to cite this article Vet. Res. (2004) 681-700
References of Vet. Res. 35 681-700
  1. Aderem A., Ulevitch R.J., Toll-like receptors in the induction of the innate immune response, Nature 406 (2000) 782-787 [CrossRef] [PubMed].
  2. Agnello D., Lankford C.S., Bream J., Morinobu A., Gadina M., O'Shea J.J., Frucht D.M., Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights, J. Clin. Immunol. 23 (2003) 147-161 [CrossRef] [PubMed].
  3. Agrawal S., Agrawal A., Doughty B., Gerwitz A., Blenis J., Van Dyke T., Pulendran B., Cutting edge: different toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos, J. Immunol. 171 (2003) 4984-4989 [PubMed].
  4. Bannerman D.D., Paape M.J., Hare W.R., Sohn E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci. 86 (2003) 3128-3137 [PubMed].
  5. Bannerman D.D., Paape M.J., Lee J.W., Zhao X., Hope J.C., Rainard P., Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection, Clin. Diagn. Lab. Immunol. 11 (2004) 463-472 [CrossRef] [PubMed].
  6. Barnum D.A., Thackeray E.L., Fish N.A., An outbreak of mastitis caused by Serratia marcescens, Can. J. Comp. Med. 22 (1958) 392-395.
  7. Bramley A.J., Sources of Streptococcus uberis in the dairy herd. I. Isolation from bovine faeces and from straw bedding of cattle, J. Dairy Res. 49 (1982) 369-373 [PubMed].
  8. Bramley A.J., Streptococcus uberis udder infection - a major barrier to reducing mastitis incidence, Br. Vet. J. 140 (1984) 328-335 [PubMed].
  9. Burvenich C., Van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L., Severity of E. coli mastitis is mainly determined by cow factors, Vet. Res. 34 (2003) 521-564 [EDP Sciences] [CrossRef] [PubMed].
  10. Collins P.D., Jose P.J., Williams T.J., The sequential generation of neutrophil chemoattractant proteins in acute inflammation in the rabbit in vivo. Relationship between C5a and proteins with the characteristics of IL-8/neutrophil-activating protein 1, J. Immunol. 146 (1991) 677-684 [PubMed].
  11. Collins R.A., Camon E.B., Chaplin P.J., Howard C.J., Influence of IL-12 on interferon-gamma production by bovine leucocyte subsets in response to bovine respiratory syncytial virus, Vet. Immunol. Immunopathol. 63 (1998) 69-72 [PubMed].
  12. Conti P., Kempuraj D., Kandere K., Di Gioacchino M., Barbacane R.C., Castellani M.L., Felaco M., Boucher W., Letourneau R., Theoharides T.C., IL-10, an inflammatory/inhibitory cytokine, but not always, Immunol. Lett. 86 (2003) 123-129 [CrossRef] [PubMed].
  13. Dinarello C.A., Cytokines as mediators in the pathogenesis of septic shock, Curr. Top. Microbiol. Immunol. 216 (1996) 133-165 [PubMed].
  14. Fierer J., Swancutt M.A., Heumann D., Golenbock D., The role of lipopolysaccharide binding protein in resistance to Salmonella infections in mice, J. Immunol. 168 (2002) 6396-6403 [PubMed].
  15. Goldammer T., Zerbe H., Molenaar A., Schuberth H.J., Brunner R.M., Kata S.R., Seyfert H.M., Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle, Clin. Diagn. Lab. Immunol. 11 (2004) 174-185 [CrossRef] [PubMed].
  16. Hirschfeld M., Ma Y., Weis J.H., Vogel S.N., Weis J.J., Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2, J. Immunol. 165 (2000) 618-622 [PubMed].
  17. Hoeben D., Burvenich C., Eppard P.J., Byatt J.C., Hard D.L., Effect of bovine somatotropin on neutrophil functions and clinical symptoms during Streptococcus uberis mastitis, J. Dairy Sci. 82 (1999) 1465-1481 [PubMed].
  18. Hoffmann J.A., Kafatos F.C., Janeway C.A., Ezekowitz R.A., Phylogenetic perspectives in innate immunity, Science 284 (1999) 1313-1318 [CrossRef].
  19. Howell D., Survey on mastitis caused by environmental bacteria, Vet. Rec. 90 (1972) 654-657 [PubMed].
  20. Jack R.S., Fan X., Bernheiden M., Rune G., Ehlers M., Weber A., Kirsch G., Mentel R., Furll B., Freudenberg M., Schmitz G., Stelter F., Schutt C., Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection, Nature 389 (1997) 742-745 [CrossRef] [PubMed].
  21. Jayarao B.M., Gillespie B.E., Lewis M.J., Dowlen H.H., Oliver S.P., Epidemiology of Streptococcus uberis intramammary infections in a dairy herd, Zentralbl. Veterinarmed. B 46 (1999) 433-442 [PubMed].
  22. King J.S., Streptococcus uberis: a review of its role as a causative organism of bovine mastitis. I. Characteristics of the organism, Br. Vet. J. 137 (1981) 36-52 [PubMed].
  23. Koj A., Initiation of acute phase response and synthesis of cytokines, Biochim. Biophys. Acta 1317 (1996) 84-94 [PubMed].
  24. Lamping N., Dettmer R., Schroder N.W., Pfeil D., Hallatschek W., Burger R., Schumann R.R., LPS-binding protein protects mice from septic shock caused by LPS or Gram-negative bacteria, J. Clin. Invest. 101 (1998) 2065-2071 [PubMed].
  25. Le Roy D., Di Padova F., Adachi Y., Glauser M.P., Calandra T., Heumann D., Critical role of lipopolysaccharide-binding protein and CD14 in immune responses against Gram-negative bacteria, J. Immunol. 167 (2001) 2759-2765 [PubMed].
  26. Lee J.W., Paape M.J., Zhao X., Recombinant bovine soluble CD14 reduces severity of experimental Escherichia coli mastitis in mice, Vet. Res. 34 (2003) 307-316 [EDP Sciences] [CrossRef] [PubMed].
  27. Lee J.W., Paape M.J., Elsasser T.H., Zhao X., Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli, Infect. Immun. 71 (2003) 4034-4039 [CrossRef] [PubMed].
  28. Leon L.R., White A.A., Kluger M.J., Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice, Am. J. Physiol. 275 (1998) R269-R277 [PubMed].
  29. Long E., Capuco A.V., Wood D.L., Sonstegard T., Tomita G., Paape M.J., Zhao X., Escherichia coli induces apoptosis and proliferation of mammary cells, Cell Death Differ. 8 (2001) 808-816 [CrossRef] [PubMed].
  30. Ma X., TNF-alpha and IL-12: a balancing act in macrophage functioning, Microbes Infect. 3 (2001) 121-129 [CrossRef] [PubMed].
  31. Marinkovic S., Jahreis G.P., Wong G.G., Baumann H., IL-6 modulates the synthesis of a specific set of acute phase plasma proteins in vivo, J. Immunol. 142 (1989) 808-812 [PubMed].
  32. Miller R.H., Paape M.J., Acton J.C., Comparison of milk somatic cell counts by Coulter and Fossomatic Counters, J. Dairy Sci. 69 (1986) 1942-1946 [PubMed].
  33. Morath S., Stadelmaier A., Geyer A., Schmidt R.R., Hartung T., Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release, J. Exp. Med. 195 (2002) 1635-1640 [CrossRef] [PubMed].
  34. Munder M., Mallo M., Eichmann K., Modolell M., Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine macrophage activation, J. Exp. Med. 187 (1998) 2103-2108 [CrossRef] [PubMed].
  35. National Mastitis Council, Current concepts of bovine mastitis, The National Mastitis Council, Inc., Madison, 1999.
  36. Nau G.J., Schlesinger A., Richmond J.F., Young R.A., Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria, J. Immunol. 170 (2003) 5203-5209 [PubMed].
  37. Nemzek J.A., Siddiqui J., Remick D.G., Development and optimization of cytokine ELISAs using commercial antibody pairs, J. Immunol. Methods 255 (2001) 149-157 [CrossRef] [PubMed].
  38. Oliver S.P., Almeida R.A., Gillespie B.E., Ivey S.J., Moorehead H., Lunn P., Dowlen H.H., Johnson D.L., Lamar K.C., Efficacy of extended pirlimycin therapy for treatment of experimentally induced Streptococcus uberis intramammary infections in lactating dairy cattle, Vet. Ther. 4 (2003) 299-308 [PubMed].
  39. Paape M.J., Bannerman D.D., Zhao X., Lee J.W., The bovine neutrophil: Structure and function in blood and milk, Vet. Res. 34 (2003) 597-627 [EDP Sciences] [CrossRef] [PubMed].
  40. Phuektes P., Mansell P.D., Dyson R.S., Hooper N.D., Dick J.S., Browning G.F., Molecular epidemiology of Streptococcus uberis isolates from dairy cows with mastitis, J. Clin. Microbiol. 39 (2001) 1460-1466 [CrossRef] [PubMed].
  41. Rainard P., Poutrel B., Deposition of complement components on Streptococcus agalactiae in bovine milk in the absence of inflammation, Infect. Immun. 63 (1995) 3422-3427 [PubMed].
  42. Rambeaud M., Almeida R.A., Pighetti G.M., Oliver S.P., Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis, Vet. Immunol. Immunopathol. 96 (2003) 193-205 [PubMed].
  43. Re F., Strominger J.L., Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells, J. Biol. Chem. 276 (2001) 37692-37699 [CrossRef] [PubMed].
  44. Redpath S., Ghazal P., Gascoigne N.R., Hijacking and exploitation of IL-10 by intracellular pathogens, Trends Microbiol. 9 (2001) 86-92 [CrossRef] [PubMed].
  45. Riollet C., Rainard P., Poutrel B., Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus, Clin. Diagn. Lab. Immunol. 7 (2000) 161-167 [CrossRef] [PubMed].
  46. Saad A.M., Ostensson K., Flow cytofluorometric studies on the alteration of leukocyte populations in blood and milk during endotoxin-induced mastitis in cows, Am. J. Vet. Res. 51 (1990) 1603-1607 [PubMed].
  47. Schalm O.W., Carroll E.J., Jain N.C., Bovine mastitis, Lea & Febiger, Philadelphia, 1971.
  48. Schroder N.W., Morath S., Alexander C., Hamann L., Hartung T., Zahringer U., Gobel U.B., Weber J.R., Schumann R.R., Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved, J. Biol. Chem. 278 (2003) 15587-15594 [CrossRef] [PubMed].
  49. Schumann R.R., Latz E., Lipopolysaccharide-binding protein, Chem. Immunol. 74 (2000) 42-60 [PubMed].
  50. Seegers H., Fourichon C., Beaudeau F., Production effects related to mastitis and mastitis economics in dairy cattle herds, Vet. Res. 34 (2003) 475-491 [EDP Sciences] [CrossRef] [PubMed].
  51. Shuster D.E., Kehrli M.E. Jr., Rainard P., Paape M., Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli, Infect. Immun. 65 (1997) 3286-3292 [PubMed].
  52. Spits H., de Waal Malefyt R., Functional characterization of human IL-10, Int. Arch. Allergy Immunol. 99 (1992) 8-15 [PubMed].
  53. Suffredini A.F., Fantuzzi G., Badolato R., Oppenheim J.J., O'Grady N.P., New insights into the biology of the acute phase response, J. Clin. Immunol. 19 (1999) 203-214 [CrossRef] [PubMed].
  54. Thijs L.G., Groeneveld A.B., Hack C.E., Multiple organ failure in septic shock, Curr. Top. Microbiol. Immunol. 216 (1996) 209-237 [PubMed].
  55. Todhunter D.A., Smith K.L., Hogan J.S., Serratia species isolated from bovine intramammary infections, J. Dairy Sci. 74 (1991) 1860-1865 [PubMed].
  56. Todhunter D.A., Smith K.L., Hogan J.S., Schoenberger P.S., Gram-negative bacterial infections of the mammary gland in cows, Am. J. Vet. Res. 52 (1991) 184-188 [PubMed].
  57. Trinchieri G., Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-gamma), Curr. Opin. Immunol. 9 (1997) 17-23 [CrossRef] [PubMed].
  58. Underhill D.M., Toll-like receptors: networking for success, Eur. J. Immunol. 33 (2003) 1767-1775 [CrossRef] [PubMed].
  59. Uthaisangsook S., Day N.K., Bahna S.L., Good R.A., Haraguchi S., Innate immunity and its role against infections, Ann. Allergy Asthma Immunol. 88 (2002) 253-264 [PubMed].
  60. Van Damme D.M., Mastitis caused by contaminated teat dip and dipping cup, Vet. Med. Small Anim. Clin. 77 (1982) 541-544.
  61. Viriyakosol S., Kirkland T., Knowledge of cellular receptors for bacterial endotoxin-1995, Clin. Infect. Dis. 21 (1995) S190-S195 [PubMed].
  62. Watts J.L., Characterization and identification of streptococci isolated from bovine mammary glands, J. Dairy Sci. 71 (1988) 1616-1624 [PubMed].
  63. Wenneras C., Ave P., Huerre M., Arondel J., Ulevitch R., Mathison J., Sansonetti P., Blockade of CD14 aggravates experimental shigellosis, J. Endotoxin Res. 7 (2001) 442-446 [CrossRef] [PubMed].
  64. Wilesmith J.W., Francis P.G., Wilson C.D., Incidence of clinical mastitis in a cohort of British dairy herds, Vet. Rec. 118 (1986) 199-204 [PubMed].
  65. Yang K.K., Dorner B.G., Merkel U., Ryffel B., Schutt C., Golenbock D., Freeman M.W., Jack R.S., Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice, J. Immunol. 169 (2002) 4475-4480 [PubMed].
  66. Yoshimura A., Lien E., Ingalls R.R., Tuomanen E., Dziarski R., Golenbock D., Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2, J. Immunol. 163 (1999) 1-5 [PubMed].
  67. Yu V.L., Serratia marcescens: historical perspective and clinical review, N. Engl. J. Med. 300 (1979) 887-893 [PubMed].