Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Culicoides-Specific Fitness Increase of Vesicular Stomatitis Virus in Insect-to-Insect Infections

Paula Rozo-Lopez and Barbara S. Drolet
Insects 15 (1) 34 (2024)
https://doi.org/10.3390/insects15010034

Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: A Systematic Review and Meta-Analysis

Tinka Jelsma, Joris J. Wijnker, Wim H. M. van der Poel and Henk J. Wisselink
Pathogens 10 (2) 173 (2021)
https://doi.org/10.3390/pathogens10020173

Molecular Pathogenesis and Immune Evasion of Vesicular Stomatitis New Jersey Virus Inferred from Genes Expression Changes in Infected Porcine Macrophages

Lauro Velazquez-Salinas, Jessica A. Canter, James J. Zhu and Luis L. Rodriguez
Pathogens 10 (9) 1134 (2021)
https://doi.org/10.3390/pathogens10091134

Impacts of Infectious Dose, Feeding Behavior, and Age of Culicoides sonorensis Biting Midges on Infection Dynamics of Vesicular Stomatitis Virus

Paula Rozo-Lopez, Berlin Londono-Renteria and Barbara S. Drolet
Pathogens 10 (7) 816 (2021)
https://doi.org/10.3390/pathogens10070816

Collective Viral Spread Mediated by Virion Aggregates Promotes the Evolution of Defective Interfering Particles

Iván Andreu-Moreno, Rafael Sanjuán and Vincent R. Racaniello
mBio 11 (1) (2020)
https://doi.org/10.1128/mBio.02156-19

Fibrinogen Gamma Chain Promotes Aggregation of Vesicular Stomatitis Virus in Saliva

Valesca Anschau and Rafael Sanjuán
Viruses 12 (3) 282 (2020)
https://doi.org/10.3390/v12030282

A Single Amino Acid Substitution in the Matrix Protein (M51R) of Vesicular Stomatitis New Jersey Virus Impairs Replication in Cultured Porcine Macrophages and Results in Significant Attenuation in Pigs

Lauro Velazquez-Salinas, Steven J. Pauszek, Lauren G. Holinka, et al.
Frontiers in Microbiology 11 (2020)
https://doi.org/10.3389/fmicb.2020.01123

rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment

Thomas P. Monath, Patricia E. Fast, Kayvon Modjarrad, et al.
Vaccine: X 1 100009 (2019)
https://doi.org/10.1016/j.jvacx.2019.100009

Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect

Iván Andreu-Moreno and Rafael Sanjuán
Current Biology 28 (20) 3212 (2018)
https://doi.org/10.1016/j.cub.2018.08.028

Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs

Lauro Velazquez-Salinas, Steven J. Pauszek, Carolina Stenfeldt, et al.
Frontiers in Microbiology 9 (2018)
https://doi.org/10.3389/fmicb.2018.01891

Oncolytic Viruses for Canine Cancer Treatment

Diana Sánchez, Gabriela Cesarman-Maus, Alfredo Amador-Molina and Marcela Lizano
Cancers 10 (11) 404 (2018)
https://doi.org/10.3390/cancers10110404

Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors

Paula Rozo-Lopez, Barbara Drolet and Berlin Londoño-Renteria
Insects 9 (4) 190 (2018)
https://doi.org/10.3390/insects9040190

Data collection for risk assessments on animal health (Acronym: DACRAH) : Final Report

Fernanda C. Dórea, Manon Swanenburg, Herman van Roermund, et al.
EFSA Supporting Publications 14 (1) 1171E (2017)
https://doi.org/10.2903/sp.efsa.2017.EN-1171

Multi-virion infectious units arise from free viral particles in an enveloped virus

José M. Cuevas, María Durán-Moreno and Rafael Sanjuán
Nature Microbiology 2 (7) (2017)
https://doi.org/10.1038/nmicrobiol.2017.78

Host predilection and transmissibility of vesicular stomatitis New Jersey virus strains in domestic cattle (Bos taurus) and swine (Sus scrofa)

Paul F Smith, Elizabeth W Howerth, Deborah Carter, et al.
BMC Veterinary Research 8 (1) (2012)
https://doi.org/10.1186/1746-6148-8-183

Domestic cattle as a non-conventional amplifying host of vesicular stomatitis New Jersey virus

P. F. SMITH, E. W. HOWERTH, D. CARTER, et al.
Medical and Veterinary Entomology 25 (2) 184 (2011)
https://doi.org/10.1111/j.1365-2915.2010.00932.x

Lesion Development and Replication Kinetics During Early Infection in Cattle Inoculated With Vesicular Stomatitis New Jersey Virus Via Scarification and Black Fly (Simulium vittatum) Bite

J. L. Reis, L. L. Rodriguez, D. G. Mead, G. Smoliga and C. C. Brown
Veterinary Pathology 48 (3) 547 (2011)
https://doi.org/10.1177/0300985810381247

Evaluation of Granulysin and Perforin as Candidate Biomarkers for Protection Following Vaccination withMycobacterium bovisBCG orM. bovisΔRD1

Charles F. Capinos Scherer, Janice J. Endsley, Juliana B. de Aguiar, et al.
Transboundary and Emerging Diseases 56 (6-7) 228 (2009)
https://doi.org/10.1111/j.1865-1682.2008.01058.x

In vivo biodistribution of a highly attenuated recombinant vesicular stomatitis virus expressing HIV-1 Gag following intramuscular, intranasal, or intravenous inoculation

J. Erik Johnson, John W. Coleman, Narender K. Kalyan, et al.
Vaccine 27 (22) 2930 (2009)
https://doi.org/10.1016/j.vaccine.2009.03.006

Experimental Transmission of Vesicular Stomatitis New Jersey Virus From Simulium vittatum to Cattle: Clinical Outcome Is Influenced by Site of Insect Feeding

D. G. Mead, K. Rainwater Lovett, M. D. Murphy, et al.
Journal of Medical Entomology 46 (4) 866 (2009)
https://doi.org/10.1603/033.046.0419