Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Detection of Coxiella burnetii in Bulk Tank Milk of Dairy Small Ruminant Farms in Greece

Daphne T. Lianou, Themistoklis Giannoulis, Charalambia K. Michael, Natalia G. C. Vasileiou, Efthymia Petinaki, Angeliki I. Katsafadou, Antonis P. Politis, Dimitris A. Gougoulis, Vasileios G. Papatsiros, Elias Papadopoulos, Nikolaos Solomakos, Eleni I. Katsarou, Vasia S. Mavrogianni, Dimitriοs C. Chatzopoulos and George C. Fthenakis
Foods 14 (3) 460 (2025)
https://doi.org/10.3390/foods14030460

Management of zoonoses in research institutions – lessons learned from a Coxiella burnetii outbreak case

Pia KS Ostach, André Dülsner, Anne Keil and Stefan Nagel-Riedasch
Laboratory Animals (2024)
https://doi.org/10.1177/00236772241271028

First report of Anaplasma spp., Ehrlichia spp., and Rickettsia spp. in Amblyomma gervaisi ticks infesting monitor lizards (Varanus begalensis) of Pakistan

Shakir Ullah, Jing-Syuan Huang, Afshan Khan, Raquel Cossío-Bayúgar, Nasreen Nasreen, Sadaf Niaz, Adil Khan, Tsai-Ying Yen, Kun-Hsien Tsai and Mourad Ben Said
Infection, Genetics and Evolution 105569 (2024)
https://doi.org/10.1016/j.meegid.2024.105569

Coxiella burnetii infection persistence in a goat herd during seven kidding seasons after an outbreak of abortions: the effect of vaccination

Ion I. Zendoia, Jesús F. Barandika, Aitor Cevidanes, Ana Hurtado, Ana L. García-Pérez and Charles M. Dozois
Applied and Environmental Microbiology (2024)
https://doi.org/10.1128/aem.02201-23

Molecular Detection of Tick‐Borne Pathogens in Kumasi: With a First Report of Zoonotic Pathogens in Abattoir Workers

Seth Offei Addo, Stacy Amoah, Nancy Martekai Unicorn, Emmanuella Tiwaa Kyeremateng, Genevieve Desewu, Patrick Kwasi Obuam, Richard Odoi-Teye Malm, Emmanuel Osei-Frempong, Francisca Adai Torto, Stephen Kwabena Accorlor, Philip Kweku Baidoo, Samuel K. Dadzie, John Asiedu Larbi and Kalman Imre
BioMed Research International 2024 (1) (2024)
https://doi.org/10.1155/2024/4848451

Coxiella burnetiid seroprevalence, risk factors, and health hazards in sheep and goats in Upper Egypt

Mostafa M.M. Attia, Hassan Y.A.H. Mahmoud, Alsagher O. Ali and Ragab M. Fereig
German Journal of Veterinary Research 4 (1) 23 (2024)
https://doi.org/10.51585/gjvr.2024.1.0069

Seroprevalence and molecular detection of Coxiella burnetii among sheep in Egypt

H. F. Kamaly, M. I. Hamed, M. F. Mansy and M. Rushdi
BULGARIAN JOURNAL OF VETERINARY MEDICINE 27 (2) 273 (2024)
https://doi.org/10.15547/bjvm.2022-0039

Detection of Coxiella burnetii in the mammary gland of a dairy goat

Benjamin Ulrich Bauer, Martin Peters, T. Louise Herms, Martin Runge, Peter Wohlsein, Tim K. Jensen and Martin Ganter
Veterinary Research Communications 48 (3) 1341 (2024)
https://doi.org/10.1007/s11259-023-10233-8

Coxiella burnetii in domestic doe goats in the United States, 2019–2020

Halie K. Miller, Matthew Branan, Rachael A. Priestley, Raquel Álvarez-Alonso, Cara Cherry, Cody Smith, Natalie J. Urie, Alyson Wiedenheft, Clayton Bliss, Katherine Marshall and Gilbert J. Kersh
Frontiers in Veterinary Science 11 (2024)
https://doi.org/10.3389/fvets.2024.1393296

Two Years after Coxiella burnetii Detection: Pathogen Shedding and Phase-Specific Antibody Response in Three Dairy Goat Herds

Christa Trachsel, Gaby Hirsbrunner, T. Louise Herms, et al.
Animals 13 (19) 3048 (2023)
https://doi.org/10.3390/ani13193048

Coxiella burnetii Infection in Livestock, Pets, Wildlife, and Ticks in Latin America and the Caribbean: a Comprehensive Review of the Literature

Loïc Epelboin, Mateus De Souza Ribeiro Mioni, Aurelie Couesnon, et al.
Current Tropical Medicine Reports 10 (3) 94 (2023)
https://doi.org/10.1007/s40475-023-00288-7

Efficacy of Phase I and Phase II Coxiella burnetii Bacterin Vaccines in a Pregnant Ewe Challenge Model

Sarah E. Williams-Macdonald, Mairi Mitchell, David Frew, et al.
Vaccines 11 (3) 511 (2023)
https://doi.org/10.3390/vaccines11030511

Coxiella burnetii (Q‐fever) outbreak associated with non‐occupational exposure in a semi‐urban area of western Croatia in 2022

Morana Tomljenovic, Danijela Lakošeljac, Lucija Knežević, et al.
Zoonoses and Public Health 70 (4) 285 (2023)
https://doi.org/10.1111/zph.13022

Genome-wide epitope mapping across multiple host species reveals significant diversity in antibody responses to Coxiella burnetii vaccination and infection

Emil Bach, Stephen F. Fitzgerald, Sarah E. Williams-MacDonald, Mairi Mitchell, William T. Golde, David Longbottom, Alasdair J. Nisbet, Annemieke Dinkla, Eric Sullivan, Richard S. Pinapati, John C. Tan, Leo A. B. Joosten, Hendrik-Jan Roest, Thomas Østerbye, Ad P. Koets, Søren Buus and Tom N. McNeilly
Frontiers in Immunology 14 (2023)
https://doi.org/10.3389/fimmu.2023.1257722

Serological Evidence and Coexposure of Selected Infections among Livestock Slaughtered at Eastern Cape Abattoirs in South Africa

K. D. Mazwi, F. B. Kolo, I. F. Jaja, R. P. Bokaba, Y. B. Ngoshe, A. Hassim, L. Neves, H. van Heerden and Ahmed Majeed Al-Shammari
International Journal of Microbiology 2023 1 (2023)
https://doi.org/10.1155/2023/8906971

Zoonoses: Infections Affecting Humans and Animals

Hendrik I. J. Roest, Chantal P. Rovers and Dimitrios Frangoulidis
Zoonoses: Infections Affecting Humans and Animals 451 (2023)
https://doi.org/10.1007/978-3-031-27164-9_12

Occurrence of Rickettsia spp. and Coxiella burnetii in ixodid ticks in Kassena-Nankana, Ghana

Seth Offei Addo, Ronald Essah Bentil, Bernice Olivia Ama Baako, et al.
Experimental and Applied Acarology 90 (1-2) 137 (2023)
https://doi.org/10.1007/s10493-023-00808-0

Pathogenesis of Bacterial Infections in Animals

Martina Jelocnik, Wilhelmina M. Huston and Hayley J. Newton
Pathogenesis of Bacterial Infections in Animals 433 (2022)
https://doi.org/10.1002/9781119754862.ch20

A cross‐sectional survey of risk factors for the presence of Coxiella burnetii in Australian commercial dairy goat farms

KW Hou, AK Wiethoelter, MA Stevenson, et al.
Australian Veterinary Journal 100 (7) 296 (2022)
https://doi.org/10.1111/avj.13163

Bibliometric analysis and network visualization mapping of global research in Q fever vaccine

Tauseef Ahmad, Haroon Haroon, Eric David Bicaldo Ornos, Husam Malibary, Akbar Hussain, Mukhtiar Baig, Eman Y. Santali, Jeehan H. Alestad, Muzaheed Muzaheed, Ali A. Rabaan and Harapan Harapan
F1000Research 11 364 (2022)
https://doi.org/10.12688/f1000research.108909.1

Modelling the Transmission of Coxiella burnetii within a UK Dairy Herd: Investigating the Interconnected Relationship between the Parturition Cycle and Environment Contamination

Dimitrios G. Patsatzis, Nick Wheelhouse and Efstathios-Al. Tingas
Veterinary Sciences 9 (10) 522 (2022)
https://doi.org/10.3390/vetsci9100522

Tick-Borne-Agents Detection in Patients with Acute Febrile Syndrome and Ticks from Magdalena Medio, Colombia

Ruth Cabrera, Willington Mendoza, Loreth López-Mosquera, Miguel Angel Cano, Nicolas Ortiz, Valentina Campo, Yoav Keynan, Lucelly López, Zulma Vanessa Rueda and Lina Andrea Gutiérrez
Pathogens 11 (10) 1090 (2022)
https://doi.org/10.3390/pathogens11101090

Coxiella burnetii and Co-Infections with Other Major Pathogens Causing Abortion in Small Ruminant Flocks in the Iberian Peninsula

María de los Angeles Ramo, Alfredo A. Benito, Joaquín Quílez, Luis V. Monteagudo, Cristina Baselga and María Teresa Tejedor
Animals 12 (24) 3454 (2022)
https://doi.org/10.3390/ani12243454

Role of Goats in the Epidemiology of Coxiella burnetii

Sofia Anastácio, Sérgio Ramalho de Sousa, Maria José Saavedra and Gabriela Jorge da Silva
Biology 11 (12) 1703 (2022)
https://doi.org/10.3390/biology11121703

Molecular investigation of haemotropic mycoplasmas and Coxiella burnetii in free‐living Xenarthra mammals from Brazil, with evidence of new haemoplasma species

Laryssa Borges de Oliveira, Ana Cláudia Calchi, Juliana Gaboardi Vultão, et al.
Transboundary and Emerging Diseases 69 (5) (2022)
https://doi.org/10.1111/tbed.14523

Validation of an Indirect Immunofluorescence Assay and Commercial Q Fever Enzyme-Linked Immunosorbent Assay for Use in Macropods

Anita Tolpinrud, John Stenos, Anne-Lise Chaber, et al.
Journal of Clinical Microbiology 60 (7) (2022)
https://doi.org/10.1128/jcm.00236-22

Seroprevalence of Q fever among ewes and associated risk factors in Ain Defla region, North-central Algeria

Abdelkader Belhouari, Samir Souames, Zahra Berrama and Nassim Ouchene
Comparative Immunology, Microbiology and Infectious Diseases 87 101853 (2022)
https://doi.org/10.1016/j.cimid.2022.101853

Molecular detection of Coxiella-like endosymbionts and absence of Coxiella burnetii in Amblyomma mixtum from Veracruz, Mexico

Estefanía Grostieta, Héctor M. Zazueta-Islas, Timoteo Cruz-Valdez, et al.
Experimental and Applied Acarology 88 (1) 113 (2022)
https://doi.org/10.1007/s10493-022-00748-1

Inactivation Kinetics of Coxiella burnetii During High-Temperature Short-Time Pasteurization of Milk

Marcel Wittwer, Philipp Hammer, Martin Runge, et al.
Frontiers in Microbiology 12 (2022)
https://doi.org/10.3389/fmicb.2021.753871

A Q fever outbreak on a dairy goat farm did not result in Coxiella burnetii shedding on neighboring sheep farms – An observational study

Benjamin Ulrich Bauer, Thea Louise Herms, Martin Runge and Martin Ganter
Small Ruminant Research 215 106778 (2022)
https://doi.org/10.1016/j.smallrumres.2022.106778

Performance Evaluation and Validation of Air Samplers To Detect Aerosolized Coxiella burnetii

A. M. Hasanthi Abeykoon, Megan Poon, Simon M. Firestone, et al.
Microbiology Spectrum 10 (5) (2022)
https://doi.org/10.1128/spectrum.00655-22

Belgian bulk tank milk surveillance program reveals the impact of a continuous vaccination protocol for small ruminants against Coxiella burnetii

Wiebke Jansen, Mickael Cargnel, Samira Boarbi, et al.
Transboundary and Emerging Diseases 69 (4) (2022)
https://doi.org/10.1111/tbed.14273

Seropositivity to Coxiella burnetii in primiparous and multiparous ewes from southern Australia: A cross-sectional study

Tom Clune, Amy Lockwood, Serina Hancock, et al.
Comparative Immunology, Microbiology and Infectious Diseases 80 101727 (2022)
https://doi.org/10.1016/j.cimid.2021.101727

Research Trends and Hotspots of Q Fever Research: A Bibliometric Analysis 1990‐2019

Muhammad Farooq, Aman Ullah Khan, Hosny El-Adawy, Katja Mertens-Scholz, Iahtasham Khan, Heinrich Neubauer, Yuh-Shan Ho and Hai-Feng Pan
BioMed Research International 2022 (1) (2022)
https://doi.org/10.1155/2022/9324471

Molecular detection of Coxiella burnetii in small ruminants and genotyping of specimens collected from goats in Poland

Agnieszka Jodełko, Monika Szymańska-Czerwińska, Jolanta Grażyna Rola and Krzysztof Niemczuk
BMC Veterinary Research 17 (1) (2021)
https://doi.org/10.1186/s12917-021-03051-0

SERO-MOLECULAR INVESTIGATION OF COXIELLA BURNETII INFECTION IN DOMESTIC RUMINANTS AND HUMANS AND ASSOCIATED RISK FACTORS BASED ON ‘ONE HEALTH’ PERSPECTIVES IN BANGLADESH

A. Chakrabartty, N. Nahar, M. S. Rahman, et al.
Journal of Veterinary Medical and One Health Research 3, Issue 1 (2021)
https://doi.org/10.36111/jvmohr.2021.3(1).0027

The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited—A Systematic Review

Sophia Körner, Gustavo R. Makert, Sebastian Ulbert, Martin Pfeffer and Katja Mertens-Scholz
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.655715

From Coxiella burnetii Infection to Pregnancy Complications: Key Role of the Immune Response of Placental Cells

Sandra Madariaga Zarza, Soraya Mezouar and Jean-Louis Mege
Pathogens 10 (5) 627 (2021)
https://doi.org/10.3390/pathogens10050627

Concept of an Active Surveillance System for Q Fever in German Small Ruminants—Conflicts Between Best Practices and Feasibility

Fenja Winter, Clara Schoneberg, Annika Wolf, et al.
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.623786

Coxiella burnetii in the environment: A systematic review and critical appraisal of sampling methods

A. M. Hasanthi Abeykoon, Nicholas Joshua Clark, Ricardo Jorge Soares Magalhaes, et al.
Zoonoses and Public Health 68 (3) 165 (2021)
https://doi.org/10.1111/zph.12791

Epidemiological study of Coxiella burnetii in dairy cattle and small ruminants in Québec, Canada

Marie-Ève Turcotte, Sébastien Buczinski, Anne Leboeuf, et al.
Preventive Veterinary Medicine 191 105365 (2021)
https://doi.org/10.1016/j.prevetmed.2021.105365

CoxBase: an Online Platform for Epidemiological Surveillance, Visualization, Analysis, and Typing of Coxiella burnetii Genomic Sequences

Akinyemi M. Fasemore, Andrea Helbich, Mathias C. Walter, et al.
mSystems 6 (6) (2021)
https://doi.org/10.1128/mSystems.00403-21

Phylogeography of Human and Animal Coxiella burnetii Strains: Genetic Fingerprinting of Q Fever in Belgium

Sara Tomaiuolo, Samira Boarbi, Tiziano Fancello, et al.
Frontiers in Cellular and Infection Microbiology 10 (2021)
https://doi.org/10.3389/fcimb.2020.625576

Molecular investigation, isolation and phylogenetic analsysis of Coxiella burnetii from aborted fetus and ticks

Yunus Kilicoglu, Abdurrahman Anil Cagirgan, Gulnur Serdar, et al.
Comparative Immunology, Microbiology and Infectious Diseases 73 101571 (2020)
https://doi.org/10.1016/j.cimid.2020.101571

Experimental Coxiella burnetii infection in non-pregnant goats and the effect of breeding

Hendrik I. J. Roest, Annemieke Dinkla, Ad P. Koets, Jacob Post and Lucien van Keulen
Veterinary Research 51 (1) (2020)
https://doi.org/10.1186/s13567-020-00797-7

Technical and Anatomical Considerations for Reproducible Inactivation of Large Animal Carcasses by Steam Sterilization

Jan Schinköthe, Benjamin Bartram-Sitzius, Jens-Peter Teifke, Ute Pfitzner and Sven Reiche
Applied Biosafety 153567602091963 (2020)
https://doi.org/10.1177/1535676020919637

Apparent prevalence and risk factors of coxiellosis (Q fever) among dairy herds in India

Pankaj Dhaka, Satya Veer Singh Malik, Jay Prakash Yadav, et al.
PLOS ONE 15 (9) e0239260 (2020)
https://doi.org/10.1371/journal.pone.0239260

Comparison of Coxiella burnetii Excretion between Sheep and Goats Naturally Infected with One Cattle-Associated Genotype

Benjamin Bauer, Louise Prüfer, Mathias Walter, Isabel Ganter, Dimitrios Frangoulidis, Martin Runge and Martin Ganter
Pathogens 9 (8) 652 (2020)
https://doi.org/10.3390/pathogens9080652

Development of a Rapid and Sensitive Colorimetric Loop-Mediated Isothermal Amplification Assay: A Novel Technology for the Detection of Coxiella burnetii From Minimally Processed Clinical Samples

Nazish Sheikh, Sanjay Kumar, Harsh Kumar Sharma, Sameer S. Bhagyawant and Duraipandian Thavaselvam
Frontiers in Cellular and Infection Microbiology 10 (2020)
https://doi.org/10.3389/fcimb.2020.00127

Relationship between Coxiella burnetii (Q fever) antibody serology and time spent outdoors

Gijs Klous, Lidwien AM Smit, Wim van der Hoek, et al.
Journal of Infection 81 (1) 90 (2020)
https://doi.org/10.1016/j.jinf.2020.04.013

Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines

Remil L. Galay, Melbourne R. Talactac, Bea V. Ambita-Salem, Dawn Maureen M. Chu, Lali Marie O. dela Costa, Cinnamon Mae A. Salangsang, Darwin Kyle B. Caracas, Florante H. Generoso, Jonathan A. Babelonia, Joeneil L. Vergano, Lena C. Berana, Kristina Andrea C. Sandalo, Billy P. Divina, Cherry R. Alvarez, Emmanuel R. Mago, Masako Andoh and Tetsuya Tanaka
Tropical Medicine and Infectious Disease 5 (2) 54 (2020)
https://doi.org/10.3390/tropicalmed5020054

Large Animal Models of Huntington’s Disease: What We Have Learned and Where We Need to Go Next

David Howland, Zdenka Ellederova, Neil Aronin, et al.
Journal of Huntington's Disease 9 (3) 201 (2020)
https://doi.org/10.3233/JHD-200425

Occurrence and risk factors of Coxiella burnetii in domestic ruminants in Lebanon

M.F. Dabaja, G. Greco, S. Villari, et al.
Comparative Immunology, Microbiology and Infectious Diseases 64 109 (2019)
https://doi.org/10.1016/j.cimid.2019.03.003

Evidence of exposure to Coxiella burnetii in neotropical free-living cervids in South America

Diego Carlos de Souza Zanatto, José Maurício Barbanti Duarte, Marcelo Bahia Labruna, et al.
Acta Tropica (2019)
https://doi.org/10.1016/j.actatropica.2019.05.028

Düzce İlinde Koyunlarda Coxiella burnetii ve Chlamydia abortus Etkenlerine karşı Antikorların Araştırılması

Mustafa Sencer Karagül, Mehmet Engin MALAL and Kadir AKAR
Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi (2019)
https://doi.org/10.33631/duzcesbed.562838

Long-term effect of cognitive behavioural therapy and doxycycline treatment for patients with Q fever fatigue syndrome: One-year follow-up of the Qure study

Ruud P.H. Raijmakers, Stephan P. Keijmel, Evi M.C. Breukers, et al.
Journal of Psychosomatic Research 116 62 (2019)
https://doi.org/10.1016/j.jpsychores.2018.11.007

First molecular and serological evidence of Coxiella burnetti infection among sheep and goats of Jammu province of India

Shefali Raj Gangoliya, Sanjay Kumar, Syed Imteyaz Alam, et al.
Microbial Pathogenesis 130 100 (2019)
https://doi.org/10.1016/j.micpath.2019.02.034

Health and zoonotic Infections of snow leopardsPanthera unicain the South Gobi desert of Mongolia

Carol Esson, Lee F. Skerratt, Lee Berger, et al.
Infection Ecology & Epidemiology 9 (1) 1604063 (2019)
https://doi.org/10.1080/20008686.2019.1604063

A systematic knowledge synthesis on the spatial dimensions of Q fever epidemics

Myrna M. T. De Rooij, Jeroen P. G. Van Leuken, Arno Swart, et al.
Zoonoses and Public Health 66 (1) 14 (2019)
https://doi.org/10.1111/zph.12534

Seroprevalence and molecular detection of coxiellosis among cattle and their human contacts in an organized dairy farm

Pankaj Dhaka, Satyaveer S. Malik, Jay P. Yadav, et al.
Journal of Infection and Public Health 12 (2) 190 (2019)
https://doi.org/10.1016/j.jiph.2018.10.001

Defense Against Biological Attacks

Patrice Newton, Miku Kuba, Bhavna Padmanabhan, Eleanor A. Latomanski and Hayley J. Newton
Defense Against Biological Attacks 213 (2019)
https://doi.org/10.1007/978-3-030-03071-1_9

Seroprevalence of Q fever in sheep and goats from the Marmara region, Turkey

Mustafa Sencer Karagul, Mehmet Engin Malal and Kadir Akar
Journal of Veterinary Research 63 (4) 527 (2019)
https://doi.org/10.2478/jvetres-2019-0070

Coxiella burnetii Antibody Prevalence and Risk Factors of Infection in the Human Population of Estonia

Kädi Neare, Marilin Janson, Pirje Hütt, Brian Lassen and Arvo Viltrop
Microorganisms 7 (12) 629 (2019)
https://doi.org/10.3390/microorganisms7120629

A Q Fever Outbreak with a High Rate of Abortions at a Dairy Goat Farm: Coxiella burnetii Shedding, Environmental Contamination, and Viability

Raquel Álvarez-Alonso, Mikel Basterretxea, Jesús F. Barandika, et al.
Applied and Environmental Microbiology 84 (20) (2018)
https://doi.org/10.1128/AEM.01650-18

The prevalence of Coxiella burnetii shedding in dairy goats at the time of parturition in an endemically infected enterprise and associated milk yield losses

José T. Canevari, Simon M. Firestone, Gemma Vincent, et al.
BMC Veterinary Research 14 (1) (2018)
https://doi.org/10.1186/s12917-018-1667-x

Airborne geographical dispersal of Q fever from livestock holdings to human communities: a systematic review and critical appraisal of evidence

Nicholas J. Clark and Ricardo J. Soares Magalhães
BMC Infectious Diseases 18 (1) (2018)
https://doi.org/10.1186/s12879-018-3135-4

Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: A consensus statement

Paul J. Plummer, J.Trenton McClure, Paula Menzies, et al.
Journal of Veterinary Internal Medicine 32 (5) 1481 (2018)
https://doi.org/10.1111/jvim.15229

Comparison of genomes of Coxiella burnetii strains using formal order analysis

S.N. Shpynov, I.V. Tarasevich, A.A. Skiba, N.N. Pozdnichenko and A.S. Gumenuk
New Microbes and New Infections 23 86 (2018)
https://doi.org/10.1016/j.nmni.2018.02.011

On the possible role of ticks in the eco-epidemiology of Coxiella burnetii in a Mediterranean ecosystem

Lucía Varela-Castro, Carla Zuddas, Nieves Ortega, et al.
Ticks and Tick-borne Diseases 9 (3) 687 (2018)
https://doi.org/10.1016/j.ttbdis.2018.02.014

A pilot program for clinical Q fever surveillance as a first step for a standardized differential diagnosis of abortions: Organizational lessons applied to goats farms

Renée de Cremoux, Kristel Gache, Elodie Rousset, et al.
Small Ruminant Research 163 60 (2018)
https://doi.org/10.1016/j.smallrumres.2017.09.008

Seroscreening of lactating cattle for coxiellosis by TRANS-PCR and commercial ELISA in Kerala, India

Pankaj Dhaka, Satyaveer Singh Malik, Jay Prakash Yadav, et al.
Journal of Experimental Biology and Agricultural Sciences 5 (3) 377 (2017)
https://doi.org/10.18006/2017.5(3).377.383

Coxiella burnetiiInfections in Small Ruminants and Humans in Switzerland

I. Magouras, J. Hunninghaus, S. Scherrer, et al.
Transboundary and Emerging Diseases 64 (1) 204 (2017)
https://doi.org/10.1111/tbed.12362

A longitudinal study of serological responses to Coxiella burnetii and shedding at kidding among intensively-managed goats supports early use of vaccines

Michael Muleme, Angus Campbell, John Stenos, et al.
Veterinary Research 48 (1) (2017)
https://doi.org/10.1186/s13567-017-0452-3

Remarkable spatial variation in the seroprevalence of Coxiella burnetii after a large Q fever epidemic

Roan Pijnacker, Johan Reimerink, Lidwien A. M. Smit, et al.
BMC Infectious Diseases 17 (1) (2017)
https://doi.org/10.1186/s12879-017-2813-y

Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains

Runa Kuley, Eric Kuijt, Mari A. Smits, et al.
Frontiers in Microbiology 8 (2017)
https://doi.org/10.3389/fmicb.2017.01526

Seroprevalence of Q fever among human and animal in Iran; A systematic review and meta-analysis

Ashraf Mohabbati Mobarez, Fahimeh Bagheri Amiri, Saber Esmaeili and Christine M. Budke
PLOS Neglected Tropical Diseases 11 (4) e0005521 (2017)
https://doi.org/10.1371/journal.pntd.0005521

The Effect of Wind onCoxiella burnetiiTransmission Between Cattle Herds: a Mechanistic Approach

S. Nusinovici, T. Hoch, M. L. Brahim, A. Joly and F. Beaudeau
Transboundary and Emerging Diseases 64 (2) 585 (2017)
https://doi.org/10.1111/tbed.12423

Estimation of the frequency of Q fever in sheep, goat and cattle herds in France: results of a 3-year study of the seroprevalence of Q fever and excretion level ofCoxiella burnetiiin abortive episodes

K. GACHE, E. ROUSSET, J. B. PERRIN, et al.
Epidemiology and Infection 145 (15) 3131 (2017)
https://doi.org/10.1017/S0950268817002308

Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock – A review to inform risk assessment studies

J.P.G. Van Leuken, A.N. Swart, A.H. Havelaar, et al.
Microbial Risk Analysis 1 19 (2016)
https://doi.org/10.1016/j.mran.2015.07.002

A cross sectional study evaluating the prevalence of Coxiella burnetii, potential risk factors for infection, and agreement between diagnostic methods in goats in Indiana

Amy E. Bauer, Kirk R.A. Hubbard, April J. Johnson, et al.
Preventive Veterinary Medicine 126 131 (2016)
https://doi.org/10.1016/j.prevetmed.2016.01.026

Analysis of Q fever in Dutch dairy goat herds and assessment of control measures by means of a transmission model

D.M. Bontje, J.A. Backer, L. Hogerwerf, H.I.J. Roest and H.J.W. van Roermund
Preventive Veterinary Medicine 123 71 (2016)
https://doi.org/10.1016/j.prevetmed.2015.11.004

Bayesian Validation of the Indirect Immunofluorescence Assay and Its Superiority to the Enzyme-Linked Immunosorbent Assay and the Complement Fixation Test for Detecting Antibodies against Coxiella burnetii in Goat Serum

Michael Muleme, John Stenos, Gemma Vincent, et al.
Clinical and Vaccine Immunology 23 (6) 507 (2016)
https://doi.org/10.1128/CVI.00724-15