Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Examination of the Virulence of Actinobacillus pleuropneumoniae Serovar 16 in Pigs

Miklós Tenk, Gergely Tóth, Zsuzsanna Márton, Rita Sárközi, Alejandra Szórádi, László Makrai, Nimród Pálmai, Tamás Szalai, Mihály Albert and László Fodor
Veterinary Sciences 11 (2) 62 (2024)
https://doi.org/10.3390/vetsci11020062

PluMu—A Mu-like Bacteriophage Infecting Actinobacillus pleuropneumoniae

Lee Julia Bartsch, Roberto Fernandez Crespo, Yunfei Wang, Michael A. Skinner, Andrew N. Rycroft, William Cooley, David J. Everest, Yanwen Li, Janine T. Bossé and Paul R. Langford
Applied Microbiology 4 (1) 520 (2024)
https://doi.org/10.3390/applmicrobiol4010037

Intranasal B5 promotes mucosal defence against Actinobacillus pleuropneumoniae via ameliorating early immunosuppression

Jingsheng Huang, Weichao Kang, Dandan Yi, Shuxin Zhu, Yifei Xiang, Chengzhi Liu, Han Li, Dejia Dai, Jieyu Su, Jiakang He and Zhengmin Liang
Virulence 15 (1) (2024)
https://doi.org/10.1080/21505594.2024.2316459

Discovery of a Novel Integrative Conjugative Element ICEAplChn2 Related to SXT/R391 in Actinobacillus pleuropneumoniae

Jinshuang Cai, Yan Geng, Baoge Zhang and Yufeng Li
Microbial Drug Resistance 30 (3) 134 (2024)
https://doi.org/10.1089/mdr.2023.0108

Actinobacillus pleuropneumoniae FliY and YdjN are involved in cysteine/cystine utilization, oxidative resistance, and biofilm formation but are not determinants of virulence

Fan Zhao, Huan Xu, Yubing Chen, et al.
Frontiers in Microbiology 14 (2023)
https://doi.org/10.3389/fmicb.2023.1169774

Adh Promotes Actinobacillus pleuropneumoniae Survival in Porcine Alveolar Macrophages by Inhibiting CHAC2-Mediated Respiratory Burst and Inflammatory Cytokine Expression

Junhui Zhu, Rining Zhu, Hexiang Jiang, et al.
Cells 12 (5) 696 (2023)
https://doi.org/10.3390/cells12050696

TurboID screening of ApxI toxin interactants identifies host proteins involved in Actinobacillus pleuropneumoniae-induced apoptosis of immortalized porcine alveolar macrophages

Yaofang Hu, Changsheng Jiang, Yueqiao Zhao, et al.
Veterinary Research 54 (1) (2023)
https://doi.org/10.1186/s13567-023-01194-6

Tea Polyphenols Protects Tracheal Epithelial Tight Junctions in Lung during Actinobacillus pleuropneumoniae Infection via Suppressing TLR-4/MAPK/PKC-MLCK Signaling

Xiaoyue Li, Zewen Liu, Ting Gao, et al.
International Journal of Molecular Sciences 24 (14) 11842 (2023)
https://doi.org/10.3390/ijms241411842

De novo identification of bacterial antigens of a clinical isolate by combining use of proteosurfaceomics, secretomics, and BacScan technologies

Jinyue Yang, Xueting Zhang, Junhua Dong, Qian Zhang, Erchao Sun, Cen Chen, Zhuangxia Miao, Yifei Zheng, Nan Zhang and Pan Tao
Frontiers in Immunology 14 (2023)
https://doi.org/10.3389/fimmu.2023.1274027

Actinobacillus pleuropneumoniae, surface proteins and virulence: a review

María M. Soto Perezchica, Alma L. Guerrero Barrera, Francisco J. Avelar Gonzalez, Teodulo Quezada Tristan and Osvaldo Macias Marin
Frontiers in Veterinary Science 10 (2023)
https://doi.org/10.3389/fvets.2023.1276712

IL-5 enhances the resistance of Actinobacillus pleuropneumoniae infection in mice through maintaining appropriate levels of lung M2, PMN-II and highly effective neutrophil extracellular traps

Peiru Chen, Chuntong Bao, Rining Zhu, et al.
Veterinary Microbiology 269 109438 (2022)
https://doi.org/10.1016/j.vetmic.2022.109438

HtrA of Actinobacillus pleuropneumoniae is a virulence factor that confers resistance to heat shock and oxidative stress

Li Zhang, Fan Zhao, Huan Xu, Yubing Chen, Chao Qi and Jinlin Liu
Gene 841 146771 (2022)
https://doi.org/10.1016/j.gene.2022.146771

Explorative Field Study on the Use of Oral Fluids for the Surveillance of Actinobacillus pleuropneumoniae Infections in Fattening Farms by an Apx-Real-Time PCR

Michael Kleinmans, Kerstin Fiebig, Robert Tabeling, et al.
Veterinary Sciences 9 (10) 552 (2022)
https://doi.org/10.3390/vetsci9100552

Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics

Heesoo Kim, Mincheol Kim, Sanghee Kim, Yung Mi Lee and Seung Chul Shin
Environmental Pollution 294 118634 (2022)
https://doi.org/10.1016/j.envpol.2021.118634

Coinfections and Phenotypic Antimicrobial Resistance in Actinobacillus pleuropneumoniae Strains Isolated From Diseased Swine in North Western Germany—Temporal Patterns in Samples From Routine Laboratory Practice From 2006 to 2020

Isabel Hennig-Pauka, Maria Hartmann, Jörg Merkel and Lothar Kreienbrock
Frontiers in Veterinary Science 8 (2022)
https://doi.org/10.3389/fvets.2021.802570

Chancen und Risiken der Nutzung genetischer Resistenzen gegen Infektionskrankheiten beim Schwein – eine Übersicht

Doris Höltig and Gerald Reiner
Tierärztliche Praxis Ausgabe G: Großtiere / Nutztiere 50 (01) 46 (2022)
https://doi.org/10.1055/a-1751-3531

Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs

Preben Mortensen, Nils Toft, István Kiss, et al.
Animals 12 (23) 3244 (2022)
https://doi.org/10.3390/ani12233244

Outer Membrane Vesicles of Actinobacillus pleuropneumoniae Exert Immunomodulatory Effects on Porcine Alveolar Macrophages

Zhuang Zhu, Fabio Antenucci, Hanne Cecilie Winther-Larsen, et al.
Microbiology Spectrum 10 (5) (2022)
https://doi.org/10.1128/spectrum.01819-22

Proteomic and immunoproteomic insights into the exoproteome of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia

Stelli G. Stancheva, Janna Frömbling, Elena L. Sassu, Isabel Hennig-Pauka, Andrea Ladinig, Wilhelm Gerner, Tom Grunert and Monika Ehling-Schulz
Microbial Pathogenesis 172 105759 (2022)
https://doi.org/10.1016/j.micpath.2022.105759

Development of a novel high resolution melting assay for identification and differentiation of all known 19 serovars of Actinobacillus pleuropneumoniae

Simone Scherrer, Sophie Peterhans, Christine Neupert, et al.
MicrobiologyOpen 11 (2) (2022)
https://doi.org/10.1002/mbo3.1272

Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary

Gábor Kardos, Rita Sárközi, Levente Laczkó, et al.
Veterinary Sciences 9 (10) 511 (2022)
https://doi.org/10.3390/vetsci9100511

JMM Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but difficult to control and eradicate

Oliver W. Stringer, Yanwen Li, Janine T. Bossé and Paul R. Langford
Journal of Medical Microbiology 71 (3) (2022)
https://doi.org/10.1099/jmm.0.001483

The Metabolic Adaptation in Response to Nitrate Is Critical for Actinobacillus pleuropneumoniae Growth and Pathogenicity under the Regulation of NarQ/P

Qiuhong Zhang, Hao Tang, Chaoyue Yan, et al.
Infection and Immunity 90 (9) (2022)
https://doi.org/10.1128/iai.00239-22

The QseB/QseC two-component system contributes to virulence of Actinobacillus pleuropneumoniae by downregulating apf gene cluster transcription

Benzhen Duan, Wei Peng, Kang Yan, et al.
Animal Diseases 2 (1) (2022)
https://doi.org/10.1186/s44149-022-00036-w

Cytokine expression by CD163+ monocytes in healthy and Actinobacillus pleuropneumoniae-infected pigs

Rea Jarosova, Petra Ondrackova, Lenka Leva, et al.
Research in Veterinary Science 152 1 (2022)
https://doi.org/10.1016/j.rvsc.2022.07.015

New Insights into Neutrophil Extracellular Trap (NETs) Formation from Porcine Neutrophils in Response to Bacterial Infections

Marta C. Bonilla, Oriana N. Quiros, Michael Wendt, et al.
International Journal of Molecular Sciences 23 (16) 8953 (2022)
https://doi.org/10.3390/ijms23168953

A Combinatorial Vaccine Containing Inactivated Bacterin and Subunits Provides Protection Against Actinobacillus pleuropneumoniae Infection in Mice and Pigs

Lijun Zhang, Wentao Luo, Ruyue Xiong, et al.
Frontiers in Veterinary Science 9 (2022)
https://doi.org/10.3389/fvets.2022.902497

Isolation of Biotype 1 Serotype 12 and Detection of Actinobacillus pleuropneumoniae from Wild Boars

Rita Sárközi, László Makrai and László Fodor
Pathogens 11 (5) 505 (2022)
https://doi.org/10.3390/pathogens11050505

Rationally designed mariner vectors for functional genomic analysis of Actinobacillus pleuropneumoniae and other Pasteurellaceae species by transposon-directed insertion-site sequencing (TraDIS)

Janine T. Bossé, Yanwen Li, Leon G. Leanse, et al.
Animal Diseases 1 (1) (2021)
https://doi.org/10.1186/s44149-021-00026-4

Therapeutic efficacy of a complex drug based on interferons for Actinobacillus pleuropneumonia in piglets

Sergey Shabunin, Aleksey Shakhov, Larisa Sashnina, et al.
BIO Web of Conferences 36 06010 (2021)
https://doi.org/10.1051/bioconf/20213606010

An in vitro study of ApxI from Actinobacillus pleuropneumoniae serotype 10 and induction of NLRP3 inflammasome‐dependent cell death

Eduardo Hernandez‐Cuellar, Alma Lilián Guerrero‐Barrera, Francisco Javier Avelar‐Gonzalez, et al.
Veterinary Record Open 8 (1) (2021)
https://doi.org/10.1002/vro2.20

Streptococcus pluranimalium 2N12 Exerts an Antagonistic Effect Against the Swine Pathogen Actinobacillus pleuropneumoniae by Producing Hydrogen Peroxide

Katy Vaillancourt, Michel Frenette, Marcelo Gottschalk and Daniel Grenier
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.787241

Actinobacillus utilizes a binding protein–dependent ABC transporter to acquire the active form of vitamin B6

Chuxi Pan, Alexandra Zimmer, Megha Shah, et al.
Journal of Biological Chemistry 297 (3) 101046 (2021)
https://doi.org/10.1016/j.jbc.2021.101046

Establishment of a Mass-Spectrometry-Based Method for the Identification of the In Vivo Whole Blood and Plasma ADP-Ribosylomes

Stephanie C. Lüthi, Anna Howald, Kathrin Nowak, et al.
Journal of Proteome Research 20 (6) 3090 (2021)
https://doi.org/10.1021/acs.jproteome.0c00923

IFN-γ –/– Mice Resist Actinobacillus pleuropneumoniae Infection by Promoting Early Lung IL-18 Release and PMN-I Accumulation

Chuntong Bao, Baijun Liu, Rining Zhu, et al.
Infection and Immunity 89 (6) (2021)
https://doi.org/10.1128/IAI.00069-21

Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen

Paul R. Langford, Oliver W. Stringer, Yanwen Li and Janine T. Bossé
Animal Health Research Reviews 22 (2) 120 (2021)
https://doi.org/10.1017/S1466252321000074

Advancements and Technologies in Pig and Poultry Bacterial Disease Control

Dominiek Maes, Carlos Piñeiro, Freddy Haesebrouck, et al.
Advancements and Technologies in Pig and Poultry Bacterial Disease Control 171 (2021)
https://doi.org/10.1016/B978-0-12-818030-3.00004-0

Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine

Dengshuai Zhao, Bo Yang, Xingguo Yuan, et al.
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.699561

DEVELOPMENT OF MULTILOCUS SEQUENCE TYPING (MLST) OF ACTINOBACILLUS PLEUROPNEUMNIAE

Dan-Yuan Lo, Tsung-Li Yeh, Hung-Chih Kuo and Ching-Fen Wu
Taiwan Veterinary Journal 47 (03n04) 61 (2021)
https://doi.org/10.1142/S1682648522500032

Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars

Oliver W. Stringer, Janine T. Bossé, Sonia Lacouture, et al.
Veterinary Microbiology 255 109021 (2021)
https://doi.org/10.1016/j.vetmic.2021.109021

Comparison of Protectivity and Safety of Two Vaccines against Actinobacillus pleuropneumoniae in a Field Study

Peter Hölzen, Tobias Warnck, Steffen Hoy, et al.
Agriculture 11 (11) 1143 (2021)
https://doi.org/10.3390/agriculture11111143

Actinobacillus pleuropneumoniae Surviving on Environmental Multi-Species Biofilms in Swine Farms

Abraham Loera-Muro, Flor Y. Ramírez-Castillo, Adriana C. Moreno-Flores, et al.
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.722683

Serovar-dependent differences in Hfq-regulated phenotypes inActinobacillus pleuropneumoniae

Josicelli Souza Crispim, Thyara Ferreira da Silva, Newton Moreno Sanches, et al.
Pathogens and Disease 78 (9) (2020)
https://doi.org/10.1093/femspd/ftaa066

Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae

Gang Li, Qian Zhao, Tian Luan, et al.
Journal of Bacteriology 202 (8) (2020)
https://doi.org/10.1128/JB.00640-19

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

Hoai Thu Dao, Quang Lam Truong, Van Tan Do and Tae-Wook Hahn
Journal of Veterinary Science 21 (2) (2020)
https://doi.org/10.4142/jvs.2020.21.e20

Actinobacillus pleuropneumoniae Interaction With Swine Endothelial Cells

Berenice Plasencia-Muñoz, Francisco J. Avelar-González, Mireya De la Garza, et al.
Frontiers in Veterinary Science 7 (2020)
https://doi.org/10.3389/fvets.2020.569370

Genome-wide screening of lipoproteins in Actinobacillus pleuropneumoniae identifies three antigens that confer protection against virulent challenge

Yurou Cao, Lulu Gao, Li Zhang, et al.
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-58968-7

Comparative Genomics of Actinobacillus pleuropneumoniae Serotype 8 Reveals the Importance of Prophages in the Genetic Variability of the Species

Isabelle Gonçalves de Oliveira Prado, Giarlã Cunha da Silva, Josicelli Souza Crispim, et al.
International Journal of Genomics 2020 1 (2020)
https://doi.org/10.1155/2020/9354204

The antimicrobial peptide MPX kills Actinobacillus pleuropneumoniae and reduces its pathogenicity in mice

Lei Wang, Xueqin Zhao, Chunling Zhu, et al.
Veterinary Microbiology 243 108634 (2020)
https://doi.org/10.1016/j.vetmic.2020.108634

Wax-printed well pads and colorimetric LAMP detection of ApxIA toxin gene

SeonHyung Lee, Ji Hun Kim, Beom-Ku Han, et al.
Molecular & Cellular Toxicology 16 (3) 263 (2020)
https://doi.org/10.1007/s13273-020-00085-7

Role of the ApxIB/ApxID exporter in secretion of the ApxII and ApxIII toxins in Actinobacillus pleuropneumoniae

Hye-Jin Yoo, Seungwoo Lee and Doug-Young Ryu
Korean Journal of Veterinary Research 60 (4) 225 (2020)
https://doi.org/10.14405/kjvr.2020.60.4.225

Stephanie C. Lüthi, Anna Howald, Kathrin Nowak, Robert Graage, Giody Bartolomei, Christine Neupert, Xaver Sidler, Deena M. Leslie Pedrioli and Michael O. Hottiger
(2020)
https://doi.org/10.1101/2020.11.17.384719

In vitro Mixed Biofilm of Streptococcus suis and Actinobacillus pleuropneumoniae Impacts Antibiotic Susceptibility and Modulates Virulence Factor Gene Expression

Yang Wang, Shenglong Gong, Xiao Dong, et al.
Frontiers in Microbiology 11 (2020)
https://doi.org/10.3389/fmicb.2020.00507

Differences in pig respiratory tract and peripheral blood immune responses to Actinobacillus pleuropneumoniae

Chuntong Bao, Hexiang Jiang, Rining Zhu, et al.
Veterinary Microbiology 247 108755 (2020)
https://doi.org/10.1016/j.vetmic.2020.108755

The Actinobacillus pleuropneumoniae sulfate-binding protein is required for the acquisition of sulfate and methionine, but is not essential for virulence

Lulu Gao, Li Zhang, Huan Xu, et al.
Veterinary Microbiology 245 108704 (2020)
https://doi.org/10.1016/j.vetmic.2020.108704

Structural Basis of Ca 2+ -Dependent Self-Processing Activity of Repeat-in-Toxin Proteins

Vojtech Kuban, Pavel Macek, Jozef Hritz, et al.
mBio 11 (2) (2020)
https://doi.org/10.1128/mBio.00226-20

Comparison of metabolic adaptation and biofilm formation of Actinobacillus pleuropneumoniae field isolates from the upper and lower respiratory tract of swine with respiratory disease

Doris Aper, Janna Frömbling, Murat Bağcıoğlu, Monika Ehling-Schulz and Isabel Hennig-Pauka
Veterinary Microbiology 240 108532 (2020)
https://doi.org/10.1016/j.vetmic.2019.108532

The CpxAR Two-Component System Contributes to Growth, Stress Resistance, and Virulence of Actinobacillus pleuropneumoniae by Upregulating wecA Transcription

Kang Yan, Ting Liu, Benzhen Duan, et al.
Frontiers in Microbiology 11 (2020)
https://doi.org/10.3389/fmicb.2020.01026

Recombinant tandem epitope vaccination provides cross protection against Actinobacillus pleuropneumoniae challenge in mice

Jiameng Xiao, Jianfang Liu, Chuntong Bao, et al.
AMB Express 10 (1) (2020)
https://doi.org/10.1186/s13568-020-01051-1

Enhancement of Apx Toxin Production in Actinobacillus pleuropneumoniae Serotypes 1, 2, and 5 by Optimizing Culture Condition

Hoai Thu Dao, Van Tan Do, Quang Lam Truong and Tae-Wook Hahn
Journal of Microbiology and Biotechnology 30 (7) 1037 (2020)
https://doi.org/10.4014/jmb.1912.12042

Porcine circovirus type 2 promotes Actinobacillus pleuropneumoniae survival during coinfection of porcine alveolar macrophages by inhibiting ROS production

Wenxi Qi, Rining Zhu, Chuntong Bao, et al.
Veterinary Microbiology 233 93 (2019)
https://doi.org/10.1016/j.vetmic.2019.04.028

A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae

Ying Li, Sanjie Cao, Luhua Zhang, et al.
Microbial Pathogenesis 134 103596 (2019)
https://doi.org/10.1016/j.micpath.2019.103596

Degraded neutrophil extracellular traps promote the growth of Actinobacillus pleuropneumoniae

Nicole de Buhr, Marta C. Bonilla, Jessica Pfeiffer, et al.
Cell Death & Disease 10 (9) (2019)
https://doi.org/10.1038/s41419-019-1895-4

Effects ofActinobacillus pleuropneumoniaeon barrier function and inflammatory response of pig tracheal epithelial cells

Philippe Bercier, Marcelo Gottschalk and Daniel Grenier
Pathogens and Disease 77 (1) (2019)
https://doi.org/10.1093/femspd/fty079

The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity

Tingting Li, Qiuhong Zhang, Rong Wang, et al.
Microbial Pathogenesis 126 310 (2019)
https://doi.org/10.1016/j.micpath.2018.11.010

In VivoEffectiveness of Injectable Antibiotics on the Recovery of AcuteActinobacillus pleuropneumoniae-Infected Pigs

Vasileios Papatsiros, Eleni Tzika, Labrini Athanasiou, et al.
Microbial Drug Resistance 25 (4) 603 (2019)
https://doi.org/10.1089/mdr.2018.0277

Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens

Thais Cristine Pereira, Patrícia Pimentel De Barros, Luciana Ruano de Oliveira Fugisaki, Rodnei Dennis Rossoni, Felipe de Camargo Ribeiro, Raquel Teles De Menezes, Juliana Campos Junqueira and Liliana Scorzoni
Journal of Fungi 4 (4) 128 (2018)
https://doi.org/10.3390/jof4040128

Evaluation of the predictive value of tonsil examination by bacteriological culture for detecting positive lung colonization status of nursery pigs exposed to Actinobacillus pleuropneumoniae by experimental aerosol infection

Doris Hoeltig, Florian Nietfeld, Katrin Strutzberg-Minder and Judith Rohde
BMC Veterinary Research 14 (1) (2018)
https://doi.org/10.1186/s12917-018-1542-9

Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development

Skander Hathroubi, Abraham Loera-Muro, Alma L. Guerrero-Barrera, Yannick D. N. Tremblay and Mario Jacques
Animal Health Research Reviews 19 (1) 17 (2018)
https://doi.org/10.1017/S146625231700010X

Activation of Porcine Alveolar Macrophages by Actinobacillus pleuropneumoniae Lipopolysaccharide via the Toll-Like Receptor 4/NF-κB-Mediated Pathway

Bi Li, Jing Fang, Zhicai Zuo, et al.
Infection and Immunity 86 (3) (2018)
https://doi.org/10.1128/IAI.00642-17

Activation of the porcine alveolar macrophages via toll-like receptor 4/NF-κB mediated pathway provides a mechanism of resistin leading to inflammation

Bi Li, Jing Fang, Zhicai Zuo, et al.
Cytokine 110 357 (2018)
https://doi.org/10.1016/j.cyto.2018.04.002

Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

Ruth Moges, Dimitri Desmonts De Lamache, Saman Sajedy, et al.
Frontiers in Veterinary Science 5 (2018)
https://doi.org/10.3389/fvets.2018.00057

In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

Fabio Antenucci, Cyrielle Fougeroux, Alannah Deeney, et al.
Veterinary Research 49 (1) (2018)
https://doi.org/10.1186/s13567-017-0502-x

Actinobacillus pleuropneumoniae triggers IL-10 expression in tonsils to mediate colonisation and persistence of infection in pigs

Andrea Müllebner, Elena L. Sassu, Andrea Ladinig, et al.
Veterinary Immunology and Immunopathology 205 17 (2018)
https://doi.org/10.1016/j.vetimm.2018.10.008

Identification of drug target candidates of the swine pathogen Actinobacillus pleuropneumoniae by construction of protein–protein interaction network

Siqi Li, Zhipeng Su, Chengjun Zhang, et al.
Genes & Genomics 40 (8) 847 (2018)
https://doi.org/10.1007/s13258-018-0691-3

Biological role of Actinobacillus pleuropneumoniae type IV pilus proteins encoded by the apf and pil operons

Feng Liu, Wei Peng, Ting Liu, et al.
Veterinary Microbiology 224 17 (2018)
https://doi.org/10.1016/j.vetmic.2018.08.006

Outer Membrane Lipoprotein Lip40 Modulates Adherence, Colonization, and Virulence of Actinobacillus pleuropneumoniae

Jinlin Liu, Yurou Cao, Lulu Gao, et al.
Frontiers in Microbiology 9 (2018)
https://doi.org/10.3389/fmicb.2018.01472

The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in Actinobacillus pleuropneumoniae

Huan Li, Feng Liu, Wei Peng, et al.
Frontiers in Cellular and Infection Microbiology 8 (2018)
https://doi.org/10.3389/fcimb.2018.00072

Genetic diversity and toxin gene distribution among serovars of Actinobacillus pleuropneumoniae from Australian pigs

S Yee, PJ Blackall and C Turni
Australian Veterinary Journal 96 (1-2) 17 (2018)
https://doi.org/10.1111/avj.12660

Actinobacillus pleuropneumoniae serotypes in Hungary

Rita Sárközi, László Makrai and László Fodor
Acta Veterinaria Hungarica 66 (3) 343 (2018)
https://doi.org/10.1556/004.2018.031

Janine T Bossé, Yanwen Li, Leon G. Leanse, Liqing Zhou, Roy R Chaudhuri, Sarah E Peters, Jinhong Wang, Gareth A. Maglennon, Matthew TG Holden, Duncan J Maskell, Alexander W Tucker, Brendan W Wren, Andrew N Rycroft and Paul R Langford
(2018)
https://doi.org/10.1101/433086

Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains' pathogenicity complexity

Monalessa Fábia Pereira, Ciro César Rossi, Larissa Eler Seide, et al.
Research in Veterinary Science 118 498 (2018)
https://doi.org/10.1016/j.rvsc.2018.05.003

Update onActinobacillus pleuropneumoniae-knowledge, gaps and challenges

E. L. Sassu, J. T. Bossé, T. J. Tobias, et al.
Transboundary and Emerging Diseases 65 72 (2018)
https://doi.org/10.1111/tbed.12739

Generation, safety and immunogenicity of an Actinobacillus pleuropneumoniae quintuple deletion mutant SLW07 (Δ apxIC Δ apxIIC Δ orf 1Δ cpxAR Δ arcA )

Fangyan Yuan, Jinlin Liu, Wujin You, et al.
Vaccine 36 (14) 1830 (2018)
https://doi.org/10.1016/j.vaccine.2018.02.083

Identification of four type II toxin-antitoxin systems in Actinobacillus pleuropneumoniae

Chengkun Zheng, Xigong Zhao, Ting Zeng, et al.
FEMS Microbiology Letters 364 (12) (2017)
https://doi.org/10.1093/femsle/fnx126

Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence

Fang Xie, Gang Li, Yalei Wang, et al.
PLOS ONE 12 (4) e0176374 (2017)
https://doi.org/10.1371/journal.pone.0176374