Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Effects of fisetin on virulence of Actinobacillus Pleuropneumoniae

Qiyun He, Chunyan Ye, Song qi, Yaxuan zheng, Kang Yan, Yunpeng chen, Huanchun Chen and Weicheng Bei
Microbial Pathogenesis 205 107692 (2025)
https://doi.org/10.1016/j.micpath.2025.107692

Atypical Actinobacillus pleuropneumoniae serotype 12 strains with a higher virulence potential

Antony T. Vincent, Sonia Lacouture, Guillaume St-Jean, Rodrigo Tapia, Servane Payen, Michiha Kon, Joachim Frey, Ho To and Marcelo Gottschalk
Veterinary Research 56 (1) (2025)
https://doi.org/10.1186/s13567-025-01579-9

Review of advanced research on swine Actinobacillus pleuropneumoniae vaccine development strategy

Adehanom Baraki Tesfaye, Rui Han, Zhengyu Tao, Liuchao You, Jiayao Zhu, Pengcheng Gao, Lei Fu and Yuefeng Chu
Frontiers in Immunology 16 (2025)
https://doi.org/10.3389/fimmu.2025.1645610

Effect of epinephrine on growth characteristics of Actinobacillus pleuropneumoniae field isolates

Elena Schreiber, Fritjof Freise, Nicole de Buhr and Isabel Hennig-Pauka
Journal of Microbiological Methods 236 107193 (2025)
https://doi.org/10.1016/j.mimet.2025.107193

Post-outbreak dynamics and persistence of Actinobacillus pleuropneumoniae serotype 15 in finisher pigs in Iowa

Marcelo Nunes de Almeida, Pablo P. Pineyro, Derald Holtkamp, Isadora Machado, Ana P. S. Silva, Guilherme Cezar, Peter Thomas, Marcelo Gottschalk and Alyona A. Michael
Veterinary Research 56 (1) (2025)
https://doi.org/10.1186/s13567-025-01538-4

Actinobacillus pleuropneumoniae: An Update on Epidemiology, Biovar, Serotyping, Virulence, and Laboratory Diagnosis

Ho To, Joachim Frey, Marcelo Gottschalk, Katsuaki Sugiura and Shinya Nagai
Microbiology and Immunology (2025)
https://doi.org/10.1111/1348-0421.70017

IL-21-dependent Ly6C+Ly6G+CD4+ T cells found in lung enhance macrophages function against Actinobacillus pleuropneumoniae infection in mice

Chuntong Bao, Xuan Jiang, Yanyan Tian, Wenjing Wang, Jiameng Xiao, Baijun Liu, Peiru Chen, Ziheng Li, Jiuyan Li, Junhui Zhu, Tamim Abdelaal, Dexi Chen, Na Li and Liancheng Lei
Cell Death Discovery 11 (1) (2025)
https://doi.org/10.1038/s41420-025-02742-z

The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair

Eva Slivenecka, David Jurnecka, Jana Holubova, Ondrej Stanek, Ludmila Brazdilova, Monika Cizkova and Ladislav Bumba
Microbiological Research 292 128043 (2025)
https://doi.org/10.1016/j.micres.2024.128043

Mass cytometry analysis reveals a cross-tissue immune landscape in Actinobacillus pleuropneumoniae -induced pneumonia

Yanyan Tian, Xuan Jiang, Chuntong Bao, Tamin Abdelaal, Dexi Chen, Wenjing Wang, Fengyang Li, Liancheng Lei, Na Li and Jose Martinez-Navio
Microbiology Spectrum 13 (6) (2025)
https://doi.org/10.1128/spectrum.02665-24

Examination of the Virulence of Actinobacillus pleuropneumoniae Serovar 16 in Pigs

Miklós Tenk, Gergely Tóth, Zsuzsanna Márton, Rita Sárközi, Alejandra Szórádi, László Makrai, Nimród Pálmai, Tamás Szalai, Mihály Albert and László Fodor
Veterinary Sciences 11 (2) 62 (2024)
https://doi.org/10.3390/vetsci11020062

Discovery of a Novel Integrative Conjugative Element ICE Apl Chn2 Related to SXT/R391 in Actinobacillus pleuropneumoniae

Jinshuang Cai, Yan Geng, Baoge Zhang and Yufeng Li
Microbial Drug Resistance 30 (3) 134 (2024)
https://doi.org/10.1089/mdr.2023.0108

Intranasal B5 promotes mucosal defence against Actinobacillus pleuropneumoniae via ameliorating early immunosuppression

Jingsheng Huang, Weichao Kang, Dandan Yi, Shuxin Zhu, Yifei Xiang, Chengzhi Liu, Han Li, Dejia Dai, Jieyu Su, Jiakang He and Zhengmin Liang
Virulence 15 (1) (2024)
https://doi.org/10.1080/21505594.2024.2316459

PluMu—A Mu-like Bacteriophage Infecting Actinobacillus pleuropneumoniae

Lee Julia Bartsch, Roberto Fernandez Crespo, Yunfei Wang, Michael A. Skinner, Andrew N. Rycroft, William Cooley, David J. Everest, Yanwen Li, Janine T. Bossé and Paul R. Langford
Applied Microbiology 4 (1) 520 (2024)
https://doi.org/10.3390/applmicrobiol4010037

Enhanced molecular stability of ApxII antigen during secretion in Corynebacterium glutamicum by rational design

Xiuxia Liu, Shujie Yang, Manman Sun, Alex Xiong Gao, Ziming Fan, Yankun Yang, Pei Zheng, Chunli Liu, Ye Li and Zhonghu Bai
Journal of Biotechnology 394 73 (2024)
https://doi.org/10.1016/j.jbiotec.2024.08.003

De novo identification of bacterial antigens of a clinical isolate by combining use of proteosurfaceomics, secretomics, and BacScan technologies

Jinyue Yang, Xueting Zhang, Junhua Dong, Qian Zhang, Erchao Sun, Cen Chen, Zhuangxia Miao, Yifei Zheng, Nan Zhang and Pan Tao
Frontiers in Immunology 14 (2023)
https://doi.org/10.3389/fimmu.2023.1274027

Actinobacillus pleuropneumoniae, surface proteins and virulence: a review

María M. Soto Perezchica, Alma L. Guerrero Barrera, Francisco J. Avelar Gonzalez, Teodulo Quezada Tristan and Osvaldo Macias Marin
Frontiers in Veterinary Science 10 (2023)
https://doi.org/10.3389/fvets.2023.1276712

Tea Polyphenols Protects Tracheal Epithelial Tight Junctions in Lung during Actinobacillus pleuropneumoniae Infection via Suppressing TLR-4/MAPK/PKC-MLCK Signaling

Xiaoyue Li, Zewen Liu, Ting Gao, et al.
International Journal of Molecular Sciences 24 (14) 11842 (2023)
https://doi.org/10.3390/ijms241411842

Actinobacillus pleuropneumoniae FliY and YdjN are involved in cysteine/cystine utilization, oxidative resistance, and biofilm formation but are not determinants of virulence

Fan Zhao, Huan Xu, Yubing Chen, et al.
Frontiers in Microbiology 14 (2023)
https://doi.org/10.3389/fmicb.2023.1169774

Adh Promotes Actinobacillus pleuropneumoniae Survival in Porcine Alveolar Macrophages by Inhibiting CHAC2-Mediated Respiratory Burst and Inflammatory Cytokine Expression

Junhui Zhu, Rining Zhu, Hexiang Jiang, et al.
Cells 12 (5) 696 (2023)
https://doi.org/10.3390/cells12050696

TurboID screening of ApxI toxin interactants identifies host proteins involved in Actinobacillus pleuropneumoniae-induced apoptosis of immortalized porcine alveolar macrophages

Yaofang Hu, Changsheng Jiang, Yueqiao Zhao, et al.
Veterinary Research 54 (1) (2023)
https://doi.org/10.1186/s13567-023-01194-6

JMM Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but difficult to control and eradicate

Oliver W. Stringer, Yanwen Li, Janine T. Bossé and Paul R. Langford
Journal of Medical Microbiology 71 (3) (2022)
https://doi.org/10.1099/jmm.0.001483

Proteomic and immunoproteomic insights into the exoproteome of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia

Stelli G. Stancheva, Janna Frömbling, Elena L. Sassu, Isabel Hennig-Pauka, Andrea Ladinig, Wilhelm Gerner, Tom Grunert and Monika Ehling-Schulz
Microbial Pathogenesis 172 105759 (2022)
https://doi.org/10.1016/j.micpath.2022.105759

IL-5 enhances the resistance of Actinobacillus pleuropneumoniae infection in mice through maintaining appropriate levels of lung M2, PMN-II and highly effective neutrophil extracellular traps

Peiru Chen, Chuntong Bao, Rining Zhu, Jun Wang, Junhui Zhu, Ziheng Li, Fengyang Li, Jingmin Gu, Xin Feng, Na Li and Liancheng Lei
Veterinary Microbiology 269 109438 (2022)
https://doi.org/10.1016/j.vetmic.2022.109438

New Insights into Neutrophil Extracellular Trap (NETs) Formation from Porcine Neutrophils in Response to Bacterial Infections

Marta C. Bonilla, Oriana N. Quiros, Michael Wendt, Isabel Hennig-Pauka, Matthias Mörgelin, Maren von Köckritz-Blickwede and Nicole de Buhr
International Journal of Molecular Sciences 23 (16) 8953 (2022)
https://doi.org/10.3390/ijms23168953

Isolation of Biotype 1 Serotype 12 and Detection of Actinobacillus pleuropneumoniae from Wild Boars

Rita Sárközi, László Makrai and László Fodor
Pathogens 11 (5) 505 (2022)
https://doi.org/10.3390/pathogens11050505

Development of a novel high resolution melting assay for identification and differentiation of all known 19 serovars of Actinobacillus pleuropneumoniae

Simone Scherrer, Sophie Peterhans, Christine Neupert, et al.
MicrobiologyOpen 11 (2) (2022)
https://doi.org/10.1002/mbo3.1272

Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics

Heesoo Kim, Mincheol Kim, Sanghee Kim, Yung Mi Lee and Seung Chul Shin
Environmental Pollution 294 118634 (2022)
https://doi.org/10.1016/j.envpol.2021.118634

Cytokine expression by CD163+ monocytes in healthy and Actinobacillus pleuropneumoniae-infected pigs

Rea Jarosova, Petra Ondrackova, Lenka Leva, Katerina Nedbalcova, Monika Vicenova, Josef Masek, Jiri Volf, Jan Gebauer, Tomas Do, Roman Guran, Zbysek Sladek, Javier Dominguez and Martin Faldyna
Research in Veterinary Science 152 1 (2022)
https://doi.org/10.1016/j.rvsc.2022.07.015

A Combinatorial Vaccine Containing Inactivated Bacterin and Subunits Provides Protection Against Actinobacillus pleuropneumoniae Infection in Mice and Pigs

Lijun Zhang, Wentao Luo, Ruyue Xiong, et al.
Frontiers in Veterinary Science 9 (2022)
https://doi.org/10.3389/fvets.2022.902497

Genetic Diversity of Actinobacillus pleuropneumoniae Serovars in Hungary

Gábor Kardos, Rita Sárközi, Levente Laczkó, Szilvia Marton, László Makrai, Krisztián Bányai and László Fodor
Veterinary Sciences 9 (10) 511 (2022)
https://doi.org/10.3390/vetsci9100511

The Metabolic Adaptation in Response to Nitrate Is Critical for Actinobacillus pleuropneumoniae Growth and Pathogenicity under the Regulation of NarQ/P

Qiuhong Zhang, Hao Tang, Chaoyue Yan, et al.
Infection and Immunity 90 (9) (2022)
https://doi.org/10.1128/iai.00239-22

Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs

Preben Mortensen, Nils Toft, István Kiss, Vilmos Palya, Han Smits and Miklós Tenk
Animals 12 (23) 3244 (2022)
https://doi.org/10.3390/ani12233244

Explorative Field Study on the Use of Oral Fluids for the Surveillance of Actinobacillus pleuropneumoniae Infections in Fattening Farms by an Apx-Real-Time PCR

Michael Kleinmans, Kerstin Fiebig, Robert Tabeling, Hanny Swam, Annelies Duivelshof-Crienen, Mathias Ritzmann and Matthias Eddicks
Veterinary Sciences 9 (10) 552 (2022)
https://doi.org/10.3390/vetsci9100552

Chancen und Risiken der Nutzung genetischer Resistenzen gegen Infektionskrankheiten beim Schwein – eine Übersicht

Doris Höltig and Gerald Reiner
Tierärztliche Praxis Ausgabe G: Großtiere / Nutztiere 50 (01) 46 (2022)
https://doi.org/10.1055/a-1751-3531

HtrA of Actinobacillus pleuropneumoniae is a virulence factor that confers resistance to heat shock and oxidative stress

Li Zhang, Fan Zhao, Huan Xu, Yubing Chen, Chao Qi and Jinlin Liu
Gene 841 146771 (2022)
https://doi.org/10.1016/j.gene.2022.146771

Outer Membrane Vesicles of Actinobacillus pleuropneumoniae Exert Immunomodulatory Effects on Porcine Alveolar Macrophages

Zhuang Zhu, Fabio Antenucci, Hanne Cecilie Winther-Larsen, et al.
Microbiology Spectrum 10 (5) (2022)
https://doi.org/10.1128/spectrum.01819-22

Coinfections and Phenotypic Antimicrobial Resistance in Actinobacillus pleuropneumoniae Strains Isolated From Diseased Swine in North Western Germany—Temporal Patterns in Samples From Routine Laboratory Practice From 2006 to 2020

Isabel Hennig-Pauka, Maria Hartmann, Jörg Merkel and Lothar Kreienbrock
Frontiers in Veterinary Science 8 (2022)
https://doi.org/10.3389/fvets.2021.802570

The QseB/QseC two-component system contributes to virulence of Actinobacillus pleuropneumoniae by downregulating apf gene cluster transcription

Benzhen Duan, Wei Peng, Kang Yan, et al.
Animal Diseases 2 (1) (2022)
https://doi.org/10.1186/s44149-022-00036-w

Rationally designed mariner vectors for functional genomic analysis of Actinobacillus pleuropneumoniae and other Pasteurellaceae species by transposon-directed insertion-site sequencing (TraDIS)

Janine T. Bossé, Yanwen Li, Leon G. Leanse, et al.
Animal Diseases 1 (1) (2021)
https://doi.org/10.1186/s44149-021-00026-4

Actinobacillus utilizes a binding protein–dependent ABC transporter to acquire the active form of vitamin B6

Chuxi Pan, Alexandra Zimmer, Megha Shah, Minh Sang Huynh, Christine Chieh-Lin Lai, Brandon Sit, Yogesh Hooda, David M. Curran and Trevor F. Moraes
Journal of Biological Chemistry 297 (3) 101046 (2021)
https://doi.org/10.1016/j.jbc.2021.101046

Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars

Oliver W. Stringer, Janine T. Bossé, Sonia Lacouture, Marcelo Gottschalk, László Fodor, Øystein Angen, Eduardo Velazquez, Paul Penny, Liancheng Lei, Paul R. Langford and Yanwen Li
Veterinary Microbiology 255 109021 (2021)
https://doi.org/10.1016/j.vetmic.2021.109021

CopA Protects Actinobacillus pleuropneumoniae against Copper Toxicity

Wei Peng, Xia Yang, Kang Yan, Huanchun Chen, Fangyan Yuan and Weicheng Bei
Veterinary Microbiology 258 109122 (2021)
https://doi.org/10.1016/j.vetmic.2021.109122

An in vitro study of ApxI from Actinobacillus pleuropneumoniae serotype 10 and induction of NLRP3 inflammasome‐dependent cell death

Eduardo Hernandez‐Cuellar, Alma Lilián Guerrero‐Barrera, Francisco Javier Avelar‐Gonzalez, Juan Manuel Díaz, Jesús Chávez‐Reyes and Alfredo Salazar de Santiago
Veterinary Record Open 8 (1) (2021)
https://doi.org/10.1002/vro2.20

Comparison of Protectivity and Safety of Two Vaccines against Actinobacillus pleuropneumoniae in a Field Study

Peter Hölzen, Tobias Warnck, Steffen Hoy, Kathleen Schlegel, Isabel Hennig-Pauka and Horst Gaumann
Agriculture 11 (11) 1143 (2021)
https://doi.org/10.3390/agriculture11111143

DEVELOPMENT OF MULTILOCUS SEQUENCE TYPING (MLST) OF ACTINOBACILLUS PLEUROPNEUMNIAE

Dan-Yuan Lo, Tsung-Li Yeh, Hung-Chih Kuo and Ching-Fen Wu
Taiwan Veterinary Journal 47 (03n04) 61 (2021)
https://doi.org/10.1142/S1682648522500032

Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen

Paul R. Langford, Oliver W. Stringer, Yanwen Li and Janine T. Bossé
Animal Health Research Reviews 22 (2) 120 (2021)
https://doi.org/10.1017/S1466252321000074

Therapeutic efficacy of a complex drug based on interferons for Actinobacillus pleuropneumonia in piglets

Sergey Shabunin, Aleksey Shakhov, Larisa Sashnina, et al.
BIO Web of Conferences 36 06010 (2021)
https://doi.org/10.1051/bioconf/20213606010

Streptococcus pluranimalium 2N12 Exerts an Antagonistic Effect Against the Swine Pathogen Actinobacillus pleuropneumoniae by Producing Hydrogen Peroxide

Katy Vaillancourt, Michel Frenette, Marcelo Gottschalk and Daniel Grenier
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.787241

Actinobacillus pleuropneumoniae Surviving on Environmental Multi-Species Biofilms in Swine Farms

Abraham Loera-Muro, Flor Y. Ramírez-Castillo, Adriana C. Moreno-Flores, et al.
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.722683

Advancements and Technologies in Pig and Poultry Bacterial Disease Control

Dominiek Maes, Carlos Piñeiro, Freddy Haesebrouck, et al.
Advancements and Technologies in Pig and Poultry Bacterial Disease Control 171 (2021)
https://doi.org/10.1016/B978-0-12-818030-3.00004-0

IFN-γ –/– Mice Resist Actinobacillus pleuropneumoniae Infection by Promoting Early Lung IL-18 Release and PMN-I Accumulation

Chuntong Bao, Baijun Liu, Rining Zhu, et al.
Infection and Immunity 89 (6) (2021)
https://doi.org/10.1128/IAI.00069-21

Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine

Dengshuai Zhao, Bo Yang, Xingguo Yuan, et al.
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.699561

Establishment of a Mass-Spectrometry-Based Method for the Identification of the In Vivo Whole Blood and Plasma ADP-Ribosylomes

Stephanie C. Lüthi, Anna Howald, Kathrin Nowak, et al.
Journal of Proteome Research 20 (6) 3090 (2021)
https://doi.org/10.1021/acs.jproteome.0c00923

Actinobacillus pleuropneumoniae Interaction With Swine Endothelial Cells

Berenice Plasencia-Muñoz, Francisco J. Avelar-González, Mireya De la Garza, et al.
Frontiers in Veterinary Science 7 (2020)
https://doi.org/10.3389/fvets.2020.569370

Recombinant tandem epitope vaccination provides cross protection against Actinobacillus pleuropneumoniae challenge in mice

Jiameng Xiao, Jianfang Liu, Chuntong Bao, et al.
AMB Express 10 (1) (2020)
https://doi.org/10.1186/s13568-020-01051-1

Comparison of metabolic adaptation and biofilm formation of Actinobacillus pleuropneumoniae field isolates from the upper and lower respiratory tract of swine with respiratory disease

Doris Aper, Janna Frömbling, Murat Bağcıoğlu, Monika Ehling-Schulz and Isabel Hennig-Pauka
Veterinary Microbiology 240 108532 (2020)
https://doi.org/10.1016/j.vetmic.2019.108532

The antimicrobial peptide MPX kills Actinobacillus pleuropneumoniae and reduces its pathogenicity in mice

Lei Wang, Xueqin Zhao, Chunling Zhu, Yaya Zhao, Shuangshuang Liu, Xiaojing Xia, Xin Liu, Huihui Zhang, Yanzhao Xu, Bolin Hang, Yawei Sun, Shijun Chen, Jinqing Jiang, Yueyu Bai, Gaiping Zhang, Liancheng Lei, Langford Paul Richard, Hanna Fotina and Jianhe Hu
Veterinary Microbiology 243 108634 (2020)
https://doi.org/10.1016/j.vetmic.2020.108634

Comparative Genomics of Actinobacillus pleuropneumoniae Serotype 8 Reveals the Importance of Prophages in the Genetic Variability of the Species

Isabelle Gonçalves de Oliveira Prado, Giarlã Cunha da Silva, Josicelli Souza Crispim, et al.
International Journal of Genomics 2020 1 (2020)
https://doi.org/10.1155/2020/9354204

Wax-printed well pads and colorimetric LAMP detection of ApxIA toxin gene

SeonHyung Lee, Ji Hun Kim, Beom-Ku Han, et al.
Molecular & Cellular Toxicology 16 (3) 263 (2020)
https://doi.org/10.1007/s13273-020-00085-7

Role of the ApxIB/ApxID exporter in secretion of the ApxII and ApxIII toxins in Actinobacillus pleuropneumoniae

Hye-Jin Yoo, Seungwoo Lee and Doug-Young Ryu
Korean Journal of Veterinary Research 60 (4) 225 (2020)
https://doi.org/10.14405/kjvr.2020.60.4.225

Stephanie C. Lüthi, Anna Howald, Kathrin Nowak, Robert Graage, Giody Bartolomei, Christine Neupert, Xaver Sidler, Deena M. Leslie Pedrioli and Michael O. Hottiger
(2020)
https://doi.org/10.1101/2020.11.17.384719

Differences in pig respiratory tract and peripheral blood immune responses to Actinobacillus pleuropneumoniae

Chuntong Bao, Hexiang Jiang, Rining Zhu, Baijun Liu, Jiameng Xiao, Ziheng Li, Peiru Chen, Paul R. Langford, Fuxian Zhang and Liancheng Lei
Veterinary Microbiology 247 108755 (2020)
https://doi.org/10.1016/j.vetmic.2020.108755

In vitro Mixed Biofilm of Streptococcus suis and Actinobacillus pleuropneumoniae Impacts Antibiotic Susceptibility and Modulates Virulence Factor Gene Expression

Yang Wang, Shenglong Gong, Xiao Dong, et al.
Frontiers in Microbiology 11 (2020)
https://doi.org/10.3389/fmicb.2020.00507

The Actinobacillus pleuropneumoniae sulfate-binding protein is required for the acquisition of sulfate and methionine, but is not essential for virulence

Lulu Gao, Li Zhang, Huan Xu, Fan Zhao, Wei Ke, Jie Chen, Jihong Yang, Chao Qi and Jinlin Liu
Veterinary Microbiology 245 108704 (2020)
https://doi.org/10.1016/j.vetmic.2020.108704

Structural Basis of Ca 2+ -Dependent Self-Processing Activity of Repeat-in-Toxin Proteins

Vojtech Kuban, Pavel Macek, Jozef Hritz, et al.
mBio 11 (2) (2020)
https://doi.org/10.1128/mBio.00226-20

Genome-wide screening of lipoproteins in Actinobacillus pleuropneumoniae identifies three antigens that confer protection against virulent challenge

Yurou Cao, Lulu Gao, Li Zhang, et al.
Scientific Reports 10 (1) (2020)
https://doi.org/10.1038/s41598-020-58968-7

The CpxAR Two-Component System Contributes to Growth, Stress Resistance, and Virulence of Actinobacillus pleuropneumoniae by Upregulating wecA Transcription

Kang Yan, Ting Liu, Benzhen Duan, et al.
Frontiers in Microbiology 11 (2020)
https://doi.org/10.3389/fmicb.2020.01026

Enhancement of Apx Toxin Production in Actinobacillus pleuropneumoniae Serotypes 1, 2, and 5 by Optimizing Culture Condition

Hoai Thu Dao, Van Tan Do, Quang Lam Truong and Tae-Wook Hahn
Journal of Microbiology and Biotechnology 30 (7) 1037 (2020)
https://doi.org/10.4014/jmb.1912.12042

Serovar-dependent differences in Hfq-regulated phenotypes inActinobacillus pleuropneumoniae

Josicelli Souza Crispim, Thyara Ferreira da Silva, Newton Moreno Sanches, et al.
Pathogens and Disease 78 (9) (2020)
https://doi.org/10.1093/femspd/ftaa066

Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae

Gang Li, Qian Zhao, Tian Luan, et al.
Journal of Bacteriology 202 (8) (2020)
https://doi.org/10.1128/JB.00640-19

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

Hoai Thu Dao, Quang Lam Truong, Van Tan Do and Tae-Wook Hahn
Journal of Veterinary Science 21 (2) (2020)
https://doi.org/10.4142/jvs.2020.21.e20

A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae

Ying Li, Sanjie Cao, Luhua Zhang, Jianlin Yuan, Qin Zhao, Yiping Wen, Rui Wu, Xiaobo Huang, Qigui Yan, Yong Huang, Xiaoping Ma, Xinfeng Han, Chang Miao and Xintian Wen
Microbial Pathogenesis 134 103596 (2019)
https://doi.org/10.1016/j.micpath.2019.103596

Effects ofActinobacillus pleuropneumoniaeon barrier function and inflammatory response of pig tracheal epithelial cells

Philippe Bercier, Marcelo Gottschalk and Daniel Grenier
Pathogens and Disease 77 (1) (2019)
https://doi.org/10.1093/femspd/fty079

In Vivo Effectiveness of Injectable Antibiotics on the Recovery of Acute Actinobacillus pleuropneumoniae -Infected Pigs

Vasileios Papatsiros, Eleni Tzika, Labrini Athanasiou, Panagiotis Tassis, Serafeim Chaintoutis and Georgios Christodoulopoulos
Microbial Drug Resistance 25 (4) 603 (2019)
https://doi.org/10.1089/mdr.2018.0277

Degraded neutrophil extracellular traps promote the growth of Actinobacillus pleuropneumoniae

Nicole de Buhr, Marta C. Bonilla, Jessica Pfeiffer, et al.
Cell Death & Disease 10 (9) (2019)
https://doi.org/10.1038/s41419-019-1895-4

The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity

Tingting Li, Qiuhong Zhang, Rong Wang, et al.
Microbial Pathogenesis 126 310 (2019)
https://doi.org/10.1016/j.micpath.2018.11.010

Porcine circovirus type 2 promotes Actinobacillus pleuropneumoniae survival during coinfection of porcine alveolar macrophages by inhibiting ROS production

Wenxi Qi, Rining Zhu, Chuntong Bao, et al.
Veterinary Microbiology 233 93 (2019)
https://doi.org/10.1016/j.vetmic.2019.04.028

Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development

Skander Hathroubi, Abraham Loera-Muro, Alma L. Guerrero-Barrera, Yannick D. N. Tremblay and Mario Jacques
Animal Health Research Reviews 19 (1) 17 (2018)
https://doi.org/10.1017/S146625231700010X

Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains' pathogenicity complexity

Monalessa Fábia Pereira, Ciro César Rossi, Larissa Eler Seide, Sebastião Martins Filho, Cláudia de Melo Dolinski and Denise Mara Soares Bazzolli
Research in Veterinary Science 118 498 (2018)
https://doi.org/10.1016/j.rvsc.2018.05.003

Outer Membrane Lipoprotein Lip40 Modulates Adherence, Colonization, and Virulence of Actinobacillus pleuropneumoniae

Jinlin Liu, Yurou Cao, Lulu Gao, et al.
Frontiers in Microbiology 9 (2018)
https://doi.org/10.3389/fmicb.2018.01472

Generation, safety and immunogenicity of an Actinobacillus pleuropneumoniae quintuple deletion mutant SLW07 (Δ apxIC Δ apxIIC Δ orf 1Δ cpxAR Δ arcA )

Fangyan Yuan, Jinlin Liu, Wujin You, et al.
Vaccine 36 (14) 1830 (2018)
https://doi.org/10.1016/j.vaccine.2018.02.083

Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

Ruth Moges, Dimitri Desmonts De Lamache, Saman Sajedy, et al.
Frontiers in Veterinary Science 5 (2018)
https://doi.org/10.3389/fvets.2018.00057

Identification of drug target candidates of the swine pathogen Actinobacillus pleuropneumoniae by construction of protein–protein interaction network

Siqi Li, Zhipeng Su, Chengjun Zhang, et al.
Genes & Genomics 40 (8) 847 (2018)
https://doi.org/10.1007/s13258-018-0691-3

Activation of Porcine Alveolar Macrophages by Actinobacillus pleuropneumoniae Lipopolysaccharide via the Toll-Like Receptor 4/NF-κB-Mediated Pathway

Bi Li, Jing Fang, Zhicai Zuo, et al.
Infection and Immunity 86 (3) (2018)
https://doi.org/10.1128/IAI.00642-17

Actinobacillus pleuropneumoniae serotypes in Hungary

Rita Sárközi, László Makrai and László Fodor
Acta Veterinaria Hungarica 66 (3) 343 (2018)
https://doi.org/10.1556/004.2018.031

In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

Fabio Antenucci, Cyrielle Fougeroux, Alannah Deeney, et al.
Veterinary Research 49 (1) (2018)
https://doi.org/10.1186/s13567-017-0502-x