Open Access
Review
Issue
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 16
DOI https://doi.org/10.1051/vetres/2010037
Published online 15 June 2010
How to cite this article Vet. Res. (2010) 41:65
  • Abul-Milh M., Paradis S.E., Dubreuil J.D., Jacques M., Binding of Actinobacillus pleuropneumoniae lipopolysaccharides to glycosphingolipids evaluated by thin-layer chromatography, Infect. Immun. (1999) 67:4983–4987. [PubMed] [Google Scholar]
  • Al-Mazrou K.A., Al-Khattaf A.S., Adherent biofilms in adenotonsillar diseases in children, Arch. Otolaryngol. Head Neck Surg. (2008) 134:20–23. [CrossRef] [PubMed] [Google Scholar]
  • Ali T., Oldfield N.J., Wooldridge K.G., Turner D.P., Ala’Aldeen D.A.A., Functional characterization of AasP, a maturation protease autotransporter protein of Actinobacillus pleuropneumoniae, Infect. Immun. (2008) 76:5608–5614. [CrossRef] [PubMed] [Google Scholar]
  • Archambault M., Rioux S., Jacques M., Evaluation of the hemoglobin-binding activity of Actinobacillus pleuropneumoniae using fluorescein-labeled pig hemoglobin and flow cytometry, FEMS Microbiol. Lett. (1999) 173:17–25. [CrossRef] [PubMed] [Google Scholar]
  • Auger E., Deslandes V., Ramjeet M., Contreras I., Nash J.H.E., Harel J., et al., Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells, Infect. Immun. (2009) 77:1426–1441. [CrossRef] [PubMed] [Google Scholar]
  • Baltes N., Hennig-Pauka I., Gerlach G.F., Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection, FEMS Microbiol. Lett. (2002) 209:283–287. [CrossRef] [PubMed] [Google Scholar]
  • Baltes N., Hennig-Pauka I., Jacobsen I., Gruber A.D., Gerlach G.F., Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection, Infect. Immun. (2003) 71:6784–6792. [CrossRef] [PubMed] [Google Scholar]
  • Baltes N., Gerlach G.F., Identification of genes transcribed by Actinobacillus pleuropneumoniae in necrotic porcine lung tissue by using selective capture of transcribed sequences, Infect. Immun. (2004) 72:6711–6716. [CrossRef] [PubMed] [Google Scholar]
  • Baltes N., N’diaye M., Jacobsen I.D., Maas A., Buettner F.F.R., Gerlach G., Deletion of the anaerobic regulator HlyX causes reduced colonization and persistence of Actinobacillus pleuropneumoniae in the porcine respiratory tract, Infect. Immun. (2005) 73:4614–4619. [CrossRef] [PubMed] [Google Scholar]
  • Baltes N., Buettner F.F.R., Gerlach G.F., Selective capture of transcribed sequences (SCOTS) of Actinobacillus pleuropneumoniae in the chronic stage of disease reveals an HlyX-regulated autotransporter protein, Vet. Microbiol. (2007) 123:110–121. [CrossRef] [PubMed] [Google Scholar]
  • Bandara A.B., Lawrence M.L., Veit H.P., Inzana T.J., Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs, Infect. Immun. (2003) 71:3320–3328. [CrossRef] [PubMed] [Google Scholar]
  • Beddek A.J., Sheehan B.J., Bossé J.T., Rycroft A.N., Kroll J.S., Langford P.R., Two TonB systems in Actinobacillus pleuropneumoniae: their roles in iron acquisition and virulence, Infect. Immun. (2004) 2:701–708. [CrossRef] [Google Scholar]
  • Bélanger M., Dubreuil D., Harel J., Girard C., Jacques M., Role of lipopolysaccharides in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings, Infect. Immun. (1990) 58:3523–3530. [PubMed] [Google Scholar]
  • Bélanger M., Dubreuil D., Jacques M., Proteins found within porcine respiratory tract secretions bind lipopolysaccharides of Actinobacillus pleuropneumoniae, Infect. Immun. (1994) 62:868–873. [PubMed] [Google Scholar]
  • Bélanger M., Bégin C., Jacques M., Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin, Infect. Immun. (1995) 63:656–662. [PubMed] [Google Scholar]
  • Bilinski T., Oxygen toxicity and microbial evolution, Biosystems (1991) 24:305–312. [CrossRef] [PubMed] [Google Scholar]
  • Blackall P.J., Klaasen H.L.B.M., Bosch H., Kuhnert P., Frey J., Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15, Vet. Microbiol. (2002) 84:47–52. [CrossRef] [PubMed] [Google Scholar]
  • Boekema B.K.H.L., Stockhofe-Zurwieden N., Smith H.E., Kamp E.M., van Putten J.P., Verheijden J.H., Adherence of Actinobacillus pleuropneumoniae to primary cultures of porcine lung epithelial cells, Vet. Microbiol. (2003) 93:133–144. [CrossRef] [PubMed] [Google Scholar]
  • Boekema B.K.H.L., Van Putten J.P.M., Stockhofe-Zurwieden N., Smith H.E., Host cell contact-induced transcription of the type IV fimbria gene cluster of Actinobacillus pleuropneumoniae, Infect. Immun. (2004) 72:691–700. [CrossRef] [PubMed] [Google Scholar]
  • Bossé J.T., MacInnes J.I., Genetic and biochemical analyses of Actinobacillus pleuropneumoniae urease, Infect. Immun. (1997) 65:4389–4394. [PubMed] [Google Scholar]
  • Bossé J.T., MacInnes J.I., Urease activity may contribute to the ability of Actinobacillus pleuropneumoniae to establish infection, Can. J. Vet. Res. (2000) 64:145–150. [PubMed] [Google Scholar]
  • Bossé J.T., Gilmour H.D., MacInnes J.I., Novel genes affecting urease activity in Actinobacillus pleuropneumoniae, J. Bacteriol. (2001) 183:1242–1247. [CrossRef] [PubMed] [Google Scholar]
  • Bossé J.T., Janson H., Sheehan B.J., Beddek A.J., Rycroft A.N., Kroll J.S., Langford P.R., Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection, Microbes Infect. (2002) 4:225–235. [CrossRef] [PubMed] [Google Scholar]
  • Bossé J.T., Sinha S., Schippers T., Kroll J.S., Redfield R.J., Langford P.R., Natural competence in strains of Actinobacillus pleuropneumoniae, FEMS Microbiol. Lett. (2009) 298:124–130. [CrossRef] [PubMed] [Google Scholar]
  • Boyen F., Eeckhaut V., Van Immerseel F., Pasmans F., Ducatelle R., Haesebrouck F., Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives, Vet. Microbiol. (2009) 135:187–195. [CrossRef] [PubMed] [Google Scholar]
  • Buettner F.F.R., Bendallah I.M., Bossé J.T., Dreckmann K., Nash J.H.E., Langford P.R., Gerlach G.F., Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence, Infect. Immun. (2008) 76:2284–2295. [CrossRef] [PubMed] [Google Scholar]
  • Buettner F.F.R., Maas A., Gerlach G.F., An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation, Vet. Microbiol. (2008) 127:106–115. [CrossRef] [PubMed] [Google Scholar]
  • Caruso J., Ross R., Effects of Mycoplasma hyopneumoniae and Actinobacillus (Haemophilus) pleuropneumoniae infections on alveolar macrophage functions in swine, Am. J. Vet. Res. (1990) 51:227–231. [PubMed] [Google Scholar]
  • Chien M.S., Chan Y.Y., Chen Z.W., Wu C.M., Liao J.W., Chen T.H., et al., Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages, Vet. Microbiol. (2009) 135:327–333. [CrossRef] [PubMed] [Google Scholar]
  • Chiers K., Haesebrouck F., van Overbeke I., Charlier G., Ducatelle R., Early in vivo interactions of Actinobacillus pleuropneumoniae with tonsils of pigs, Vet. Microbiol. (1999) 68:301–306. [CrossRef] [PubMed] [Google Scholar]
  • Chiers K., Donné E., Overbeke I.V., Ducatelle R., Haesebrouck F., Actinobacillus pleuropneumoniae infections in closed swine herds: infection patterns and serological profiles, Vet. Microbiol. (2002) 85:343–352. [CrossRef] [PubMed] [Google Scholar]
  • Cho W.S., Chae C., Expression of the apxIV gene in pigs naturally infected with Actinobacillus pleuropneumoniae, J. Comp. Pathol. (2001) 125:34–40. [CrossRef] [PubMed] [Google Scholar]
  • Chung J.W., Ng-Thow-Hing C., Budman L.I., Gibbs B.F., Nash J.H.E., Jacques M., Coulton J.W., Outer membrane proteome of Actinobacillus pleuropneumoniae: LC-MS/MS analyses validate in silico predictions, Proteomics (2007) 7:1854–1865. [CrossRef] [PubMed] [Google Scholar]
  • Cruijsen T.L.M., van Leengoed L.A.M.G., Dekker-Nooren T.C.E.M., Schoevers E.J., Verheijden J.H.M., Phagocytosis and killing of Actinobacillus pleuropneumoniae by alveolar macrophages and polymorphonuclear leukocytes isolated from pigs, Infect. Immun. (1992) 60:4867–4871. [PubMed] [Google Scholar]
  • Cruijsen T.L.M., van Leengoed L.A.M.G., Kamp E.M., Bartelse A., Korevaar A., Verheijden J.H.M., Susceptibility to Actinobacillus pleuropneumoniae infection in pigs from an endemically infected herd is related to the presence of toxin-neutralizing antibodies, Vet. Microbiol. (1995) 47:219–228. [CrossRef] [PubMed] [Google Scholar]
  • Cullen J.M., Rycroft A.N., Phagocytosis by pig alveolar macrophages of Actinobacillus pleuropneumoniae serotype-2 mutant strains defective in hemolysin-II (ApxII) and pleurotoxin (ApxIII), Microbiology (1994) 140:237–244. [CrossRef] [PubMed] [Google Scholar]
  • Daban M., Medrano A., Querol E., Cloning, sequencing and expression of the transferrin-binding protein 1 gene from Actinobacillus pleuropneumoniae, Biochem. J. (1996) 315:257–264. [PubMed] [Google Scholar]
  • Dalai B., Zhou R., Wan Y., Kang M.S., Li L., Li T.T., et al., Histone-like protein H-NS regulates biofilm formation and virulence of Actinobacillus pleuropneumoniae, Microb. Pathog. (2009) 46:128–134. [CrossRef] [PubMed] [Google Scholar]
  • Deneer H.G., Potter A.A., Identification of a maltose-inducible major outer membrane protein in Actinobacillus pleuropneumoniae, Microb. Pathog. (1989) 6:425–432. [CrossRef] [PubMed] [Google Scholar]
  • Deslandes V., Nash J.H.E., Harel J., Coulton J.W., Jacques M., Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions, BMC Genomics (2007) 8:72. [Google Scholar]
  • Diarra M.S., Dolence J., Dolence E.K., Darwish I., Miller M.J., Malouin F., Jacques M., Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores, Appl. Environ. Microbiol. (1996) 62:853–859. [PubMed] [Google Scholar]
  • Dom P., Haesebrouck F., De Baetselier P., Stimulation and suppression of the oxygenation activity of porcine pulmonary alveolar macrophages by Actinobacillus pleuropneumoniae and its metabolites, Am. J. Vet. Res. (1992) 53:1113–1118. [PubMed] [Google Scholar]
  • Dom P., Haesebrouck F., Kamp E., Smits M., Influence of Actinobacillus pleuropneumoniae serotype 2 and its cytolysins on porcine neutrophil chemiluminescence, Infect. Immun. (1992) 60:4328–4334. [PubMed] [Google Scholar]
  • Dom P., Haesebrouck F., Ducatelle R., Charlier G., In vivo association of Actinobacillus pleuropneumoniae serotype 2 with the respiratory epithelium of pigs, Infect. Immun. (1994) 62:1262–1267. [PubMed] [Google Scholar]
  • Donlan R.M., Costerton J.W., Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev. (2002) 15:167–193. [CrossRef] [PubMed] [Google Scholar]
  • Enriquez-Verdugo I., Guerrero A.L., Serrano J.J., Godinez D., Rosales J.L., Tenorio V., de la Garza M., Adherence of Actinobacillus pleuropneumoniae to swine-lung collagen, Microbiology (2004) 150:2391–2400. [CrossRef] [PubMed] [Google Scholar]
  • Fenwick B., Osburn B., Immune responses to the lipopolysaccharides and capsular polysaccharides of Haemophilus pleuropneumoniae in convalescent and immunized pigs, Infect. Immun. (1986) 54:575–582. [PubMed] [Google Scholar]
  • Fenwick B., Henry S., Porcine pleuropneumonia, J. Am. Vet. Med. Assoc. (1994) 204:1334–1340. [PubMed] [Google Scholar]
  • Finkel S.E., Kolter R., DNA as a nutrient novel role for bacterial competence gene homologs, J. Bacteriol. (2001) 183:6288–6293. [CrossRef] [PubMed] [Google Scholar]
  • Frey J., Bosse J.T., Chang Y.F., Cullen J.M., Fenwick B., Gerlach G.F., et al., Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes, J. Gen. Microbiol. (1993) 139:1723–1728. [PubMed] [Google Scholar]
  • Frey J., Kuhn R., Nicolet J., Association of the CAMP phenomenon in Actinobacillus pleuropneumoniae with the RTX toxins ApxI, ApxII and ApxIII, FEMS Microbiol. Lett. (1994) 124:245–251. [CrossRef] [PubMed] [Google Scholar]
  • Frey J., Virulence in Actinobacillus pleuropneumoniae and RTX toxins, Trends Microbiol. (1995) 3:257–261. [CrossRef] [PubMed] [Google Scholar]
  • Fuller T.E., Martin S., Teel J.F., Alaniz G.R., Kennedy M.J., Lowery D.E., Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model, Microb. Pathog. (2000) 29:39–51. [CrossRef] [PubMed] [Google Scholar]
  • Gerlach G.F., Klashinsky S., Anderson C., Potter A.A., Willson P.J., Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates, Infect. Immun. (1992) 60:3253–3261. [PubMed] [Google Scholar]
  • Gonzalez G.C., Caamano D.L., Schryvers A.B., Identification and characterization of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae, Mol. Microbiol. (1990) 4:1173–1179. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez G.C., Yu R.H., Rosteck P.R. Jr, Schryvers A.B., Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes, Microbiology (1995) 141:2405–2416. [CrossRef] [PubMed] [Google Scholar]
  • Gottschalk M., Taylor D.J., Actinobacillus pleuropneumoniae, in: Straw B.E., Zimmerman J.J., D’Allaire S., Taylor D.J. (Eds.), Diseases of swine, Blackwell Publishing Professional, Ames, Iow, USA, 2006, pp. 563–576. [Google Scholar]
  • Gram T., Ahrens P., Nielsen J.P., Evaluation of a PCR for detection of Actinobacillus pleuropneumoniae in mixed bacterial cultures from tonsils, Vet. Microbiol. (1996) 51:95–104. [CrossRef] [PubMed] [Google Scholar]
  • Haesebrouck F., Chiers K., Van Overbeke I., Ducatelle R., Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection, Vet. Microbiol. (1997) 58:239–249. [CrossRef] [PubMed] [Google Scholar]
  • Haesebrouck F., Pasmans F., Chiers K., Maes D., Ducatelle R., Decostere A., Efficacy of vaccines against bacterial diseases in swine: what can we expect?, Vet. Microbiol. (2004) 100:255–268. [CrossRef] [PubMed] [Google Scholar]
  • Inzana T.J., Ma J., Workman T., Gogolewski R.P., Anderson P., Virulence properties and protective efficacy of the capsular polymer of Haemophilus (Actinobacillus) pleuropneumoniae serotype 5, Infect. Immun. (1988) 56:1880–1889. [PubMed] [Google Scholar]
  • Izano E.A., Sadovskaya I., Vinogradov E., Mulks M.H., Velliyagounder K., Ragunath C., et al., Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae, Microb. Pathog. (2007) 43:1–9. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen M.J., Nielsen J.P., Development and evaluation of a selective and indicative medium for isolation of Actinobacillus pleuropneumoniae from tonsils, Vet. Microbiol. (1995) 47:191–197. [CrossRef] [PubMed] [Google Scholar]
  • Jacobsen I., Hennig-Pauka I., Baltes N., Trost M., Gerlach G.F., Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence, Infect. Immun. (2005) 73:226–234. [CrossRef] [PubMed] [Google Scholar]
  • Jeannotte M.E., Abul-Milh M., DubreuilJ.D., Jacques M., Binding of Actinobacillus pleuropneumoniae to phosphatidylethanolamine, Infect. Immun. (2003) 71:4657–4663. [CrossRef] [PubMed] [Google Scholar]
  • Jessing S.G., Ahrens P., Inzana T.J., Angen O., The genetic organisation of the capsule biosynthesis region of Actinobacillus pleuropneumoniae serotypes 1, 6, 7, and 12, Vet. Microbiol. (2008) 129:350–359. [CrossRef] [PubMed] [Google Scholar]
  • Jolie R.A.V., Mulks M.H., Thacker B.J., Antigenic differences within Actinobacillus pleuropneumoniae serotype 1, Vet. Microbiol. (1994) 38:329–349. [CrossRef] [PubMed] [Google Scholar]
  • Kaplan J.B., Velliyagounder K., Ragunath C., Rohde H., Mack D., Knobloch J.K.M., Ramasubbu N., Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms, J. Bacteriol. (2004) 186:8213–8220. [CrossRef] [PubMed] [Google Scholar]
  • Kaplan J.B., Mulks M.H., Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae, Vet. Microbiol. (2005) 108:89–94. [CrossRef] [PubMed] [Google Scholar]
  • Labrie J., Pelletier-Jacques G., Deslandes V., Ramjeet M., Auger E., Nash J.H.E., Jacques M., Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae , Vet. Res. (2010) 41:03. [Google Scholar]
  • Langford P.R., Loynds B.M., Kroll J.S., Cloning and molecular characterization of Cu, Zn superoxide dismutase from Actinobacillus pleuropneumoniae, Infect. Immun. (1996) 64:5035–5041. [PubMed] [Google Scholar]
  • Lilja M., Silvola J., Räisänen S., Stenfors L.E., Where are the receptors for Streptococcus pyogenes located on the tonsillar surface epithelium?, Int. J. Pediatr. Otorhinolaryngol. (1999) 50:37–43. [CrossRef] [PubMed] [Google Scholar]
  • Little T.W.A., Haemophilus infection in pigs, Vet. Rec. (1970) 7:399–402. [CrossRef] [Google Scholar]
  • Liu J.L., Chen X., Tan C., Guo Y., Chen Y., Fu S.L., et al., In vivo induced RTX toxin ApxIVA is essential for the full virulence of Actinobacillus pleuropneumoniae , Vet. Microbiol. (2009) 137:282–289. [CrossRef] [PubMed] [Google Scholar]
  • Lone A.G., Deslandes V., Nash J.H.E., Jacques M., MacInnes J.I., malT knockout mutation invokes a stringent type gene-expression profile in Actinobacillus pleuropneumoniae in bronchoalveolar fluid, BMC Microbiol. (2009) 9:195. [Google Scholar]
  • Lone A.G., Deslandes V., Nash J.H.E., Jacques M., MacInnes J.I., Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid, PLoS ONE (2009) 4:e6139. [Google Scholar]
  • Marois C., Gottschalk M., Morvan H., Fablet C., Madec F., Kobisch M., Experimental infection of SPF pigs with Actinobacillus pleuropneumoniae serotype 9 alone or in association with Mycoplasma hyopneumoniae, Vet. Microbiol. (2009) 135:283–291. [CrossRef] [PubMed] [Google Scholar]
  • Mikael L.G., Pawelek P.D., Labrie J., Sirois M., Coulton J.W., Jacques M., Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae, Microbiology (2002) 148:2869–2882. [PubMed] [Google Scholar]
  • Mikael L.G., Srikumar R., Coulton J.W., Jacques M., fhuA of Actinobacillus pleuropneumoniae encodes a ferrichrome receptor but is not regulated by iron, Infect. Immun. (2003) 71:2911–2915. [CrossRef] [PubMed] [Google Scholar]
  • Mullen L.M., Bossé J.T., Nair S.P., Ward J.M., Rycroft A.N., Robertson G., et al., Pasteurellaceae ComE1 proteins combine the properties of fibronectin adhesins and DNA binding competence proteins, PLoS ONE (2008) 3:e3991. [Google Scholar]
  • Negrete-Abascal E., Tenorio V.R., Serrano J.J., Garcia C., de la Garza M., Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A, Can. J. Vet. Res. (1994) 58:83–86. [PubMed] [Google Scholar]
  • Negrete-Abascal E., Tenorio V.R., Guerrero A.L., Garcia R.M., Reyes M.E., de la Garza M., Purification and characterization of a protease from Actinobacillus pleuropneumoniae serotype 1, an antigen common to all the serotypes, Can. J. Vet. Res. (1998) 62:183–190. [PubMed] [Google Scholar]
  • Negrete-Abascal E., Garcia R.M., Reyes M.E., Godinez D., de la Garza M., Membrane vesicles released by Actinobacillus pleuropneumoniae contain proteases and Apx toxins, FEMS Microbiol. Lett. (2000) 191:109–113. [CrossRef] [PubMed] [Google Scholar]
  • Negrete-Abascal E., Reyes M.E., Garcia R.M., Vaca S., Giron J.A., Garcia O., et al., Flagella and motility in Actinobacillus pleuropneumoniae, J. Bacteriol. (2003) 185:664–668. [CrossRef] [PubMed] [Google Scholar]
  • Nicolet J., Bacteriology and epidemiology of Haemophilus pleuropneumoniae, Proceedings of the American Association of Swine Practitioners, 1985, pp. 7–11. [Google Scholar]
  • Nicolet J., Actinobacillus pleuropneumoniae, in: Leman A.D., Straw B., Mengeling W.L., D’Allaire S., Taylor D.J. (Eds.), Diseases of Swine, 1992, Ames, Iowa State University Press, pp. 401–408. [Google Scholar]
  • Niven D.F., Levesque M., V-Factor-dependent growth of Actinobacillus pleuropneumoniae biotype-2, Int. J. Syst. Bacteriol. (1988) 38:319–320. [CrossRef] [Google Scholar]
  • Niven D.F., Donga J., Archibald F.S., Responses of Haemophilus pleuropneumoniae to iron restriction: changes in the outer membrane protein profile and the removal of iron from porcine transferrin, Mol. Microbiol. (1989) 3:1083–1089. [CrossRef] [PubMed] [Google Scholar]
  • Paradis S.E., Dubreuil D., Rioux S., Gottschalk M., Jacques M., High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells, Infect. Immun. (1994) 62:3311–3319. [PubMed] [Google Scholar]
  • Paradis S.E., Dubreuil J.D., Gottschalk M., Archambault M., Jacques M., Inhibition of adherence of Actinobacillus pleuropneumoniae to porcine respiratory tract cells by monoclonal antibodies directed against LPS and partial characterization of the LPS receptors, Curr. Microbiol. (1999) 39:313–320. [CrossRef] [PubMed] [Google Scholar]
  • Pol J.M.A., van Leengoed L.A.M.G., Stockhofe N., Kok G., Wensvoort G., Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract, Vet. Microbiol. (1997) 55:259–264. [CrossRef] [PubMed] [Google Scholar]
  • Provost M., Harel J., Labrie J., Sirois M., Jacques M., Identification, cloning and characterization of rfaE of Actinobacillus pleuropneumoniae serotype 1, a gene involved in lipopolysaccharide inner-core biosynthesis, FEMS Microbiol. Lett. (2003) 223:7–14. [CrossRef] [PubMed] [Google Scholar]
  • Ramjeet M., Deslandes V., St Michael F., Cox A., Kobisch M.N., Gottschalk M., Jacques M., Truncation of the lipopolysaccharide outer core affects susceptibility to antimicrobial peptides and virulence of Actinobacillus pleuropneumoniae serotype 1, J. Biol. Chem. (2005) 280:39104–39114. [CrossRef] [PubMed] [Google Scholar]
  • Ramjeet M., Cox A.D., Hancock M.A., Mourez M., Labrie J., Gottschalk M., Jacques M., Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1, Mol. Microbiol. (2008) 70:221–235. [CrossRef] [PubMed] [Google Scholar]
  • Ramjeet M., Deslandes V., Gouré J., Jacques M., Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies, Anim. Health Res. Rev. (2008) 9:25–45. [CrossRef] [PubMed] [Google Scholar]
  • Ricard M.A., Archibald F.S., Niven D.F., Isolation and identification of a putative porcine transferrin receptor from Actinobacillus pleuropneumoniae biotype 1, J. Gen. Microbiol. (1991) 137:2733–2740. [PubMed] [Google Scholar]
  • Rioux S., Galarneau C., Harel J., Frey J., Nicolet J., Kobisch M., et al., Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1, Can. J. Microbiol. (1999) 45:1017–1026. [CrossRef] [PubMed] [Google Scholar]
  • Rioux S., Galarneau C., Harel J., Kobisch M., Frey J., Gottschalk M., Jacques M., Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1, Microb. Pathog. (2000) 28:279–289. [CrossRef] [PubMed] [Google Scholar]
  • Rycroft A.N., Cullen J.M., Complement resistance in Actinobacillus (Haemophilus) pleuropneumoniae infection of swine, Am. J. Vet. Res. (1990) 51:1449–1453. [PubMed] [Google Scholar]
  • Sakano T., Shibata I., Samegai Y., Taneda A., Okada M., Irisawa T., Sato S., Experimental pneumonia of pigs infected with Aujeszky’s disease virus and Actinobacillus pleuropneumoniae , J. Vet. Med. Sci. (1993) 55:575–579. [PubMed] [Google Scholar]
  • Schaller A., Kuhn R., Kuhnert P., Nicolet J., Anderson T.J., MacInnes J.I., et al., Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae , Microbiology (1999) 145:2105–2116. [CrossRef] [PubMed] [Google Scholar]
  • Serebrin S., Rosendal S., Valdivieso-Garcia A., Little P., Endothelial cytotoxicity of Actinobacillus pleuropneumoniae, Res. Vet. Sci. (1991) 50:18–22. [PubMed] [Google Scholar]
  • Shakarji L., Mikael L.G., Srikumar R., Kobisch M., Coulton J.W., Jacques M., FhuA and HgbA, outer membrane proteins of Actinobacillus pleuropneumoniae: their role as virulence determinants, Can. J. Microbiol. (2006) 52:391–396. [CrossRef] [PubMed] [Google Scholar]
  • Sheehan B.J., Langford P.R., Rycroft A.N., Kroll J.S., [Cu,Zn]-superoxide dismutase mutants of the swine pathogen Actinobacillus pleuropneumoniae are unattenuated in infections of the natural host, Infect. Immun. (2000) 68:4778–4781. [CrossRef] [PubMed] [Google Scholar]
  • Sheehan B.J., Bosse J.T., Beddek A.J., Rycroft A.N., Kroll J.S., Langford P.R., Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host, Infect. Immun. (2003) 71:3960–3970. [CrossRef] [PubMed] [Google Scholar]
  • Sidibé M., Messier S., Lariviere S., Gottschalk M., Mittal K.R., Detection of Actinobacillus pleuropneumoniae in the porcine upper respiratory tract as a complement to serological tests, Can. J. Vet. Res. (1993) 57:204–208. [PubMed] [Google Scholar]
  • Srikumar R., Mikael L.G., Pawelek P.D., Khamessan A., Gibbs B.F., Jacques M., Coulton J.W., Molecular cloning of haemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae, Microbiology (2004) 150:1723–1734. [CrossRef] [PubMed] [Google Scholar]
  • Stevenson A., Macdonald J., Roberts M., Cloning and characterisation of type 4 fimbrial genes from Actinobacillus pleuropneumoniae, Vet. Microbiol. (2003) 92:121–134. [CrossRef] [PubMed] [Google Scholar]
  • Subashchandrabose S., LeVeque R.M., Wagner T.K., Kirkwood R.N., Kiupel M., Mulks M.H., Branched-chain amino acids are required for the survival and virulence of Actinobacillus pleuropneumoniae in swine, Infect. Immun. (2009) 77:4925–4933. [CrossRef] [PubMed] [Google Scholar]
  • Tarigan S., Slocombe R.F., Browning G.F., Kimpton W., Functional and structural changes of porcine alveolar macrophages induced by sublytic doses of a heat-labile, hemolytic, cytotoxic substance produced by Actinobacillus pleuropneumoniae, Am. J. Vet. Res. (1994) 55:1548–1557. [PubMed] [Google Scholar]
  • Tegetmeyer H.E., Fricke K., Baltes N., An isogenic Actinobacillus pleuropneumoniae AasP mutant exhibits altered biofilm formation but retains virulence, Vet. Microbiol. (2009) 137:392–396. [CrossRef] [PubMed] [Google Scholar]
  • Tonpitak W., Thiede S., Oswald W., Baltes N., Gerlach G.F., Actinobacillus pleuropneumoniae iron transport: a set of exbBD genes is transcriptionally linked to the tbpB gene and required for utilization of transferrin-bound iron, Infect. Immun. (2000) 68:1164–1170. [CrossRef] [PubMed] [Google Scholar]
  • Udeze F.A., Kadis S., Inhibition of bactericidal activity of anticapsular antibody by nonspecific antibodies reactive with surface-exposed antigenic determinants on Actinobacillus pleuropneumoniae, Infect. Immun. (1992) 60:3852–3860. [PubMed] [Google Scholar]
  • Utrera V., Pijoan C., Fimbriae in Actinobacillus pleuropneumoniae strains isolated from pig respiratory tracts, Vet. Rec. (1991) 128:357–358. [CrossRef] [PubMed] [Google Scholar]
  • Van de Kerkhof A., Haesebrouck F., Chiers K., Ducatelle R., Kamp E.M., Smits M.A., Influence of Actinobacillus pleuropneumoniae and its metabolites on porcine alveolar epithelial cells, Infect. Immun. (1996) 64:3905–3907. [PubMed] [Google Scholar]
  • Van Overbeke I., Chiers K., Charlier G., Vandenberghe I., Van Beeumen J., Ducatelle R., Haesebrouck F., Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells, Vet. Microbiol. (2002) 88:59–74. [CrossRef] [PubMed] [Google Scholar]
  • Vigre H., Angen O., Barfod K., Lavritsen D.T., Sorensen V., Transmission of Actinobacillus pleuropneumoniae in pigs under field-like conditions: emphasis on tonsillar colonisation and passively acquired colostral antibodies, Vet. Microbiol. (2002) 89:151–159. [CrossRef] [PubMed] [Google Scholar]
  • Ward C.K., Inzana T.J., Resistance of Actinobacillus pleuropneumoniae to bactericidal antibody and complement is mediated by capsular polysaccharide and blocking antibody specific for lipopolysaccharide, J. Immunol. (1994) 153:2110–2121. [PubMed] [Google Scholar]
  • Ward C.K., Inzana T.J., Identification and characterization of a DNA region involved in the export of capsular polysaccharides by Actinobacillus pleuropneumoniae serotype 5a, Infect. Immun. (1997) 65:2491–2496. [PubMed] [Google Scholar]
  • Ward C.K., Lawrence M.L., Veit H.P., Inzana T.J., Cloning and mutagenesis of a serotype-specific DNA region involved in encapsulation and virulence of Actinobacillus pleuropneumoniae serotype 5a: concomitant expression of serotype 5a and 1 capsular polysaccharides in recombinant A. pleuropneumoniae serotype 1, Infect. Immun. (1998) 66:3326–3336. [PubMed] [Google Scholar]
  • Wilke M., Franz B., Gerlach G.F., Characterization of a large transferrin-binding protein from Actinobacillus pleuropneumoniae serotype 7, J. Vet. Med. B Infect. Dis. Vet. Public Health (1997) 44:73–86. [Google Scholar]
  • Wilson P.J., Falk G., Klashinsky S., Detection of Actinobacillus pleuropneumoniae infection in pigs, Can. Vet. J. (1987) 28:111–116. [PubMed] [Google Scholar]
  • Yagihashi T., Nunoya T., Mitui T., Tajima M., Effect of Mycoplasma hyopneumoniae infection on the development of Haemophilus pleuropneumoniae in pigs, Nippon Juigaku Zasshi (1984) 46:705–713. [PubMed] [Google Scholar]
  • Zaas A.K., Schwartz D.A., Innate immunity and the lung: defense at the interface between host and environment, Trends Cardiovasc. Med. (2005) 15:195–202. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y., Tennent J.M., Ingham A., Beddome G., Prideaux C., Michalski W.P., Identification of type 4 fimbriae in Actinobacillus pleuropneumoniae, FEMS Microbiol. Lett. (2000) 189:15–18. [CrossRef] [PubMed] [Google Scholar]