Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Comparison of Virulence Patterns Between Streptococcus uberis Causing Transient and Persistent Intramammary Infection

Anyaphat Srithanasuwan, Noppason Pangprasit and Witaya Suriyasathaporn
Frontiers in Veterinary Science 9 (2022)
https://doi.org/10.3389/fvets.2022.806674

Mastitis: Impact of Dry Period, Pathogens, and Immune Responses on Etiopathogenesis of Disease and its Association with Periparturient Diseases

Ashley F. Egyedy and Burim N. Ametaj
Dairy 3 (4) 881 (2022)
https://doi.org/10.3390/dairy3040061

Genomic surveillance reveals antibiotic resistance gene transmission via phage recombinases within sheep mastitis-associated Streptococcus uberis

Ben Vezina, Maria Nives Rosa, Antonella Canu and Sebastiana Tola
BMC Veterinary Research 18 (1) (2022)
https://doi.org/10.1186/s12917-022-03341-1

The divergent roles of sortase in the biology of Gram-positive bacteria

Aliyath Susmitha, Harsha Bajaj and Kesavan Madhavan Nampoothiri
The Cell Surface 7 100055 (2021)
https://doi.org/10.1016/j.tcsw.2021.100055

Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds

Ben Vezina, Hulayyil Al-harbi, Hena R. Ramay, et al.
Scientific Reports 11 (1) (2021)
https://doi.org/10.1038/s41598-021-82357-3

Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: a review

Aluminé S. Fessia and Liliana M. Odierno
Folia Microbiologica 66 (4) 509 (2021)
https://doi.org/10.1007/s12223-021-00879-9

Assessment of the prevalence of Streptococcus uberis in dairy cow feces and implications for herd health

Virginia E. Sherwin, Martin J. Green, James A. Leigh and Sharon A. Egan
Journal of Dairy Science 104 (11) 12042 (2021)
https://doi.org/10.3168/jds.2021-20310

A Paradox in Bacterial Pathogenesis: Activation of the Local Macrophage Inflammasome Is Required for Virulence of Streptococcus uberis

Nathan Archer, Sharon A. Egan, Tracey J. Coffey, et al.
Pathogens 9 (12) 997 (2020)
https://doi.org/10.3390/pathogens9120997

Complete Genome Sequence of Streptococcus agalactiae Strain 01173, Isolated from Kuwaiti Wild Fish

Morena Santi, Sharon A. Egan, James A. Leigh, et al.
Microbiology Resource Announcements 9 (36) (2020)
https://doi.org/10.1128/MRA.00674-20

PCR-Based Direct Detection of Streptococcus uberis from Subclinical and Clinical Dairy Cattle Milk Samples

Virginia E. Sherwin, Morena Santi, Olivia Walker, et al.
Veterinary Medicine International 2020 1 (2020)
https://doi.org/10.1155/2020/8828624

Relative expression of genes associated with adhesion to bovine mammary epithelial cells by Streptococcus uberis

Aluminé S. Fessia, Silvana A. Dieser, María Sol Renna, Claudia G. Raspanti and Liliana M. Odierno
Research in Veterinary Science 132 33 (2020)
https://doi.org/10.1016/j.rvsc.2020.05.016

A novel subtraction diversity array distinguishes between clinical and non-clinical Streptococcus uberis and identifies potential virulence determinants

S. Abureema, M. Deighton and N. Mantri
Veterinary Microbiology 237 108385 (2019)
https://doi.org/10.1016/j.vetmic.2019.108385

Genotyping and study of adherence-related genes of Streptococcus uberis isolates from bovine mastitis

Aluminé S. Fessia, Silvana A. Dieser, Claudia G. Raspanti and Liliana M. Odierno
Microbial Pathogenesis 130 295 (2019)
https://doi.org/10.1016/j.micpath.2019.03.027

Discrimination of contagious and environmental strains of Streptococcus uberis in dairy herds by means of mass spectrometry and machine-learning

Necati Esener, Martin J. Green, Richard D. Emes, et al.
Scientific Reports 8 (1) (2018)
https://doi.org/10.1038/s41598-018-35867-6

Supplementation of linoleic acid (C18:2n-6) or α-linolenic acid (C18:3n-3) changes microbial agonist-induced oxylipid biosynthesis

V.E. Ryman, N. Packiriswamy, B. Norby, et al.
Journal of Dairy Science 100 (3) 1870 (2017)
https://doi.org/10.3168/jds.2016-11599

Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages

Juliane Günther, Anna Czabanska, Isabel Bauer, et al.
Veterinary Research 47 (1) (2016)
https://doi.org/10.1186/s13567-015-0287-8

A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property

Xiaobo Liang, Bing Liu, Fan Zhu, et al.
Scientific Reports 6 (1) (2016)
https://doi.org/10.1038/srep30966

Role of Streptococcus uberis adhesion molecule in the pathogenesis of Streptococcus uberis mastitis

Raúl A. Almeida, Oudessa Kerro Dego, Susan I. Headrick, Mark J. Lewis and Stephen P. Oliver
Veterinary Microbiology 179 (3-4) 332 (2015)
https://doi.org/10.1016/j.vetmic.2015.07.005

Virulence related sequences; insights provided by comparative genomics of Streptococcus uberis of differing virulence

Maqsud Hossain, Sharon A Egan, Tracey Coffey, et al.
BMC Genomics 16 (1) (2015)
https://doi.org/10.1186/s12864-015-1512-6

Role of sortase A in the pathogenesis ofStaphylococcus aureus-induced mastitis in mice

Fuguang Chen, Bingrun Liu, Dacheng Wang, et al.
FEMS Microbiology Letters 351 (1) 95 (2014)
https://doi.org/10.1111/1574-6968.12354

Structural investigation of rhamnose-rich polysaccharides from Streptococcus dysgalactiae bovine mastitis isolate

Olga Neiwert, Otto Holst and Katarzyna A. Duda
Carbohydrate Research 389 192 (2014)
https://doi.org/10.1016/j.carres.2013.12.018

Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria

Olaf Schneewind and Dominique Missiakas
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1843 (8) 1687 (2014)
https://doi.org/10.1016/j.bbamcr.2013.11.009

Construction of a Streptococcus iniae sortase A mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus)

J. Wang, L.L. Zou and A.X. Li
Fish & Shellfish Immunology 40 (2) 392 (2014)
https://doi.org/10.1016/j.fsi.2014.07.028

Gram-typing of mastitis bacteria in milk samples using flow cytometry

S.N. Langerhuus, K.L. Ingvartsen, T.W. Bennedsgaard and C.M. Røntved
Journal of Dairy Science 96 (1) 267 (2013)
https://doi.org/10.3168/jds.2012-5813

Early host response in the mammary gland after experimental Streptococcus uberis challenge in heifers

Astrid de Greeff, Ruth Zadoks, Lisette Ruuls, et al.
Journal of Dairy Science 96 (6) 3723 (2013)
https://doi.org/10.3168/jds.2012-6320

Chemical structures of the secondary cell wall polymers (SCWPs) isolated from bovine mastitis Streptococcus uberis

Anna Czabańska, Otto Holst and Katarzyna A. Duda
Carbohydrate Research 377 58 (2013)
https://doi.org/10.1016/j.carres.2013.05.015

Vru (Sub0144) controls expression of proven and putative virulence determinants and alters the ability of Streptococcus uberis to cause disease in dairy cattle

Sharon A. Egan, Philip N. Ward, Michael Watson, Terence R. Field and James A. Leigh
Microbiology 158 (6) 1581 (2012)
https://doi.org/10.1099/mic.0.055863-0

Structural analysis of the lipoteichoic acids isolated from bovine mastitis Streptococcus uberis 233, Streptococcus dysgalactiae 2023 and Streptococcus agalactiae 0250

Anna Czabańska, Olga Neiwert, Buko Lindner, et al.
Carbohydrate Research 361 200 (2012)
https://doi.org/10.1016/j.carres.2012.09.007

Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae

Vincent P. Richards, Ping Lang, Paulina D. Pavinski Bitar, et al.
Infection, Genetics and Evolution 11 (6) 1263 (2011)
https://doi.org/10.1016/j.meegid.2011.04.019

Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9

Yong Jun Goh, Caitlin Goin, Sarah O’Flaherty, Eric Altermann and Robert Hutkins
Microbial Cell Factories 10 (S1) (2011)
https://doi.org/10.1186/1475-2859-10-S1-S22

Host-response patterns of intramammary infections in dairy cows

Ynte H. Schukken, J. Günther, J. Fitzpatrick, et al.
Veterinary Immunology and Immunopathology 144 (3-4) 270 (2011)
https://doi.org/10.1016/j.vetimm.2011.08.022