Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

MAIT cell-MR1 reactivity is highly conserved across multiple divergent species

Matthew D. Edmans, Timothy K. Connelley, Sophie Morgan, Troi J. Pediongco, Siddharth Jayaraman, Jennifer A. Juno, Bronwyn S. Meehan, Phoebe M. Dewar, Emmanuel A. Maze, Eduard O. Roos, Basudev Paudyal, Jeffrey Y.W. Mak, Ligong Liu, David P. Fairlie, Huimeng Wang, Alexandra J. Corbett, James McCluskey, Lindert Benedictus, Elma Tchilian, Paul Klenerman and Sidonia B.G. Eckle
Journal of Biological Chemistry 300 (6) 107338 (2024)
https://doi.org/10.1016/j.jbc.2024.107338

Comprehensive phenotyping of peripheral blood monocytes in healthy bovine

Francesco Grandoni, Maria Carmela Scatà, Alessandra Martucciello, et al.
Cytometry Part A 101 (2) 122 (2022)
https://doi.org/10.1002/cyto.a.24492

A subset of cytotoxic effector memory T cells enhances CAR T cell efficacy in a model of pancreatic ductal adenocarcinoma

Vanaja Konduri, Sujith K. Joseph, Tiara T. Byrd, Zeid Nawas, Jonathan Vazquez-Perez, Colby J. Hofferek, Matthew M. Halpert, Dongliang Liu, Zhengdong Liang, Yunyu Baig, Vita S. Salsman, Damilola Oyewole-Said, Anna Tsimelzon, Briana A. Burns, Changyi Chen, Jonathan M. Levitt, Qizhi Yao, Nabil M. Ahmed, Meenakshi Hegde and William K. Decker
Science Translational Medicine 13 (592) (2021)
https://doi.org/10.1126/scitranslmed.abc3196

Identification and Phenotype of MAIT Cells in Cattle and Their Response to Bacterial Infections

Matthew D. Edmans, Timothy K. Connelley, Siddharth Jayaraman, et al.
Frontiers in Immunology 12 (2021)
https://doi.org/10.3389/fimmu.2021.627173

Matthew D. Edmans, Timothy K. Connelley, Siddharth Jayaraman, Christina Vrettou, Martin Vordermeier, Jeffrey Y. W. Mak, Ligong Liu, David P. Fairlie, Emmanuel Atangana Maze, Tiphany Chrun, Paul Klenerman, Sidonia B. G. Eckle, Elma Tchilian and Lindert Benedictus
(2020)
https://doi.org/10.1101/2020.11.09.374678

MR1-Restricted T Cells with MAIT-like Characteristics Are Functionally Conserved in the Pteropid Bat Pteropus alecto

Edwin Leeansyah, Ying Ying Hey, Wan Rong Sia, et al.
iScience 23 (12) 101876 (2020)
https://doi.org/10.1016/j.isci.2020.101876

Molecular cloning and characterization of the pig MHC class Ⅰ-related MR1 gene

Xingxing Xiao, Baohong Liu, Xueting Ma, Shunli Yang and Jianping Cai
Developmental & Comparative Immunology 96 58 (2019)
https://doi.org/10.1016/j.dci.2019.02.020

A Xenopus tadpole alternative model to study innate-like T cell-mediated anti-mycobacterial immunity

Rhoo Kun Hyoe and Jacques Robert
Developmental & Comparative Immunology 92 253 (2019)
https://doi.org/10.1016/j.dci.2018.12.002

Mucosal-Associated Invariant T Cells Expressing the TRAV1-TRAJ33 Chain Are Present in Pigs

Xingxing Xiao, Kun Li, Xueting Ma, et al.
Frontiers in Immunology 10 (2019)
https://doi.org/10.3389/fimmu.2019.02070

An overview on the identification of MAIT cell antigens

Lars Kjer‐Nielsen, Alexandra J Corbett, Zhenjun Chen, et al.
Immunology & Cell Biology 96 (6) 573 (2018)
https://doi.org/10.1111/imcb.12057

In Vitro and In Vivo Analysis of the Gram-Negative Bacteria–Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells

Claire Soudais, Fatoumata Samassa, Manal Sarkis, et al.
The Journal of Immunology 194 (10) 4641 (2015)
https://doi.org/10.4049/jimmunol.1403224

MR1‐restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis

Marielle C. Gold, Ruth J. Napier and David M. Lewinsohn
Immunological Reviews 264 (1) 154 (2015)
https://doi.org/10.1111/imr.12271

Coevolution of T‐cell receptors with MHC and non‐MHC ligands

Caitlin D. Castro, Adrienne M. Luoma and Erin J. Adams
Immunological Reviews 267 (1) 30 (2015)
https://doi.org/10.1111/imr.12327

Recognition of Vitamin B Precursors and Byproducts by Mucosal Associated Invariant T Cells

Sidonia B.G. Eckle, Alexandra J. Corbett, Andrew N. Keller, et al.
Journal of Biological Chemistry 290 (51) 30204 (2015)
https://doi.org/10.1074/jbc.R115.685990

Mucosal-Associated Invariant T-Cells: New Players in Anti-Bacterial Immunity

James E. Ussher, Paul Klenerman and Chris B. Willberg
Frontiers in Immunology 5 (2014)
https://doi.org/10.3389/fimmu.2014.00450

Cell surface expression of MR1B, a splice variant of the MHC class I-related molecule MR1, revealed with antibodies

Hisateru Yamaguchi, Kentaro Tsukamoto and Keiichiro Hashimoto
Biochemical and Biophysical Research Communications 443 (2) 422 (2014)
https://doi.org/10.1016/j.bbrc.2013.11.096

MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage

Marielle C. Gold, James E. McLaren, Joseph A. Reistetter, et al.
Journal of Experimental Medicine 211 (8) 1601 (2014)
https://doi.org/10.1084/jem.20140507

Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire

Marco Lepore, Artem Kalinichenko, Alessia Colone, et al.
Nature Communications 5 (1) (2014)
https://doi.org/10.1038/ncomms4866

NKT and MAIT invariant TCRα sequences can be produced efficiently by VJ gene recombination

Hui Yee Greenaway, Benedict Ng, David A. Price, et al.
Immunobiology 218 (2) 213 (2013)
https://doi.org/10.1016/j.imbio.2012.04.003

Co-dependents: MR1-restricted MAIT cells and their antimicrobial function

Marielle C. Gold and David M. Lewinsohn
Nature Reviews Microbiology 11 (1) 14 (2013)
https://doi.org/10.1038/nrmicro2918

MR1B, a natural spliced isoform of the MHC‐related 1 protein, is expressed as homodimers at the cell surface and activates MAIT cells

Julien Lion, Veronique Debuysscher, Anais Wlodarczyk, et al.
European Journal of Immunology 43 (5) 1363 (2013)
https://doi.org/10.1002/eji.201242461

Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals

Kentaro Tsukamoto, Janine E. Deakin, Jennifer A. Marshall Graves and Keiichiro Hashimoto
Immunogenetics 65 (2) 115 (2013)
https://doi.org/10.1007/s00251-012-0666-5

The molecular basis for Mucosal-Associated Invariant T cell recognition of MR1 proteins

Jacinto López-Sagaseta, Charles L. Dulberger, James E. Crooks, et al.
Proceedings of the National Academy of Sciences 110 (19) (2013)
https://doi.org/10.1073/pnas.1222678110

MAIT cells, surveyors of a new class of antigen: development and functions

Lionel Le Bourhis, Yvonne K Mburu and Olivier Lantz
Current Opinion in Immunology 25 (2) 174 (2013)
https://doi.org/10.1016/j.coi.2013.01.005

Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress

M C Gold, T Eid, S Smyk-Pearson, et al.
Mucosal Immunology 6 (1) 35 (2013)
https://doi.org/10.1038/mi.2012.45

Polyclonal Mucosa-Associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection

Wei-Jen Chua, Steven M. Truscott, Christopher S. Eickhoff, et al.
Infection and Immunity 80 (9) 3256 (2012)
https://doi.org/10.1128/IAI.00279-12

Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor

Rangsima Reantragoon, Lars Kjer-Nielsen, Onisha Patel, et al.
Journal of Experimental Medicine 209 (4) 761 (2012)
https://doi.org/10.1084/jem.20112095

MR1 presents microbial vitamin B metabolites to MAIT cells

Lars Kjer-Nielsen, Onisha Patel, Alexandra J. Corbett, et al.
Nature 491 (7426) 717 (2012)
https://doi.org/10.1038/nature11605

Endogenous MHC-Related Protein 1 Is Transiently Expressed on the Plasma Membrane in a Conformation That Activates Mucosal-Associated Invariant T Cells

Wei-Jen Chua, Sojung Kim, Nancy Myers, et al.
The Journal of Immunology 186 (8) 4744 (2011)
https://doi.org/10.4049/jimmunol.1003254

Mucosal-associated invariant T cells: unconventional development and function

Lionel Le Bourhis, Lucia Guerri, Mathilde Dusseaux, et al.
Trends in Immunology 32 (5) 212 (2011)
https://doi.org/10.1016/j.it.2011.02.005