Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Outer Membrane Lipoprotein Lip40 Modulates Adherence, Colonization, and Virulence of Actinobacillus pleuropneumoniae

Jinlin Liu, Yurou Cao, Lulu Gao, et al.
Frontiers in Microbiology 9 (2018)
https://doi.org/10.3389/fmicb.2018.01472

Actinobacillus pleuropneumoniae serotypes in Hungary

Rita Sárközi, László Makrai and László Fodor
Acta Veterinaria Hungarica 66 (3) 343 (2018)
https://doi.org/10.1556/004.2018.031

The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in Actinobacillus pleuropneumoniae

Huan Li, Feng Liu, Wei Peng, et al.
Frontiers in Cellular and Infection Microbiology 8 (2018)
https://doi.org/10.3389/fcimb.2018.00072

Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence

Fang Xie, Gang Li, Yalei Wang, et al.
PLOS ONE 12 (4) e0176374 (2017)
https://doi.org/10.1371/journal.pone.0176374

Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae

Luis Andrés Arteaga Blanco, Josicelli Souza Crispim, Kenner Morais Fernandes, et al.
Cell and Tissue Research 370 (1) 153 (2017)
https://doi.org/10.1007/s00441-017-2653-5

Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae

Zhuang Zhu, Qin Zhao, Yu Zhao, et al.
Antonie van Leeuwenhoek 110 (12) 1647 (2017)
https://doi.org/10.1007/s10482-017-0914-7

Identification of four type II toxin-antitoxin systems in Actinobacillus pleuropneumoniae

Chengkun Zheng, Xigong Zhao, Ting Zeng, et al.
FEMS Microbiology Letters 364 (12) (2017)
https://doi.org/10.1093/femsle/fnx126

Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae

Elena L. Sassu, Andrea Ladinig, Stephanie C. Talker, et al.
Veterinary Research 48 (1) (2017)
https://doi.org/10.1186/s13567-017-0411-z

The SapA Protein Is Involved in Resistance to Antimicrobial Peptide PR-39 and Virulence of Actinobacillus pleuropneumoniae

Fang Xie, Yalei Wang, Gang Li, et al.
Frontiers in Microbiology 8 (2017)
https://doi.org/10.3389/fmicb.2017.00811

Pig lung immune cytokine response to the swine influenza virus and the Actinobacillus pleuropneumoniae infection

Ewelina Czyżewska-Dors, Arkadiusz Dors, Krzysztof Kwit, Ewelina Stasiak and Małgorzata Pomorska-Mól
Journal of Veterinary Research 61 (3) 259 (2017)
https://doi.org/10.1515/jvetres-2017-0036

Actinobacillus pleuropneumoniae grows as aggregates in the lung of pigs: is it time to refine our in vitro biofilm assays?

Yannick D. N. Tremblay, Josée Labrie, Sonia Chénier and Mario Jacques
Microbial Biotechnology 10 (4) 756 (2017)
https://doi.org/10.1111/1751-7915.12432

TolC2 is required for the resistance, colonization and virulence of Actinobacillus pleuropneumoniae

Ying Li, Sanjie Cao, Luhua Zhang, et al.
Journal of Medical Microbiology 66 (8) 1170 (2017)
https://doi.org/10.1099/jmm.0.000544

Kinetics of single and dual infection of pigs with swine influenza virus and Actinobacillus pleuropneumoniae

Małgorzata Pomorska-Mól, Arkadiusz Dors, Krzysztof Kwit, et al.
Veterinary Microbiology 201 113 (2017)
https://doi.org/10.1016/j.vetmic.2017.01.011

Absence of TolC Impairs Biofilm Formation in Actinobacillus pleuropneumoniae by Reducing Initial Attachment

Ying Li, Sanjie Cao, Luhua Zhang, et al.
PLOS ONE 11 (9) e0163364 (2016)
https://doi.org/10.1371/journal.pone.0163364

A TolC-Like Protein of Actinobacillus pleuropneumoniae Is Involved in Antibiotic Resistance and Biofilm Formation

Ying Li, Sanjie Cao, Luhua Zhang, et al.
Frontiers in Microbiology 07 (2016)
https://doi.org/10.3389/fmicb.2016.01618

Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae

Elena L. Sassu, Janna Frömbling, J. Catharina Duvigneau, et al.
BMC Veterinary Research 13 (1) (2016)
https://doi.org/10.1186/s12917-017-0979-6

Auxotrophic Actinobacillus pleurpneumoniae grows in multispecies biofilms without the need for nicotinamide-adenine dinucleotide (NAD) supplementation

Abraham Loera-Muro, Mario Jacques, Francisco J. Avelar-González, et al.
BMC Microbiology 16 (1) (2016)
https://doi.org/10.1186/s12866-016-0742-3

Involvement of NF-κB in regulation of Actinobacillus pleuropneumoniae exotoxin ApxI-induced proinflammatory cytokine production in porcine alveolar macrophages

Chiung-Wen Hsu, Siou-Cen Li, Nai-Yun Chang, et al.
Veterinary Microbiology 195 128 (2016)
https://doi.org/10.1016/j.vetmic.2016.09.020

The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae

Fang Xie, Gang Li, Yanhe Zhang, et al.
Microbial Pathogenesis 93 38 (2016)
https://doi.org/10.1016/j.micpath.2016.01.009

Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea

Boram Kim, Jin Hur, Ji Yeong Lee, Yoonyoung Choi and John Hwa Lee
Veterinary Quarterly 1 (2016)
https://doi.org/10.1080/01652176.2016.1155241

Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae

Fang Xie, Gang Li, Wanjiang Zhang, et al.
Veterinary Microbiology 183 1 (2016)
https://doi.org/10.1016/j.vetmic.2015.11.021

Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge

Fang Xie, Gang Li, Long Zhou, et al.
BMC Veterinary Research 13 (1) (2016)
https://doi.org/10.1186/s12917-016-0928-9

The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity

Lei Wang, Wanhai Qin, Shuxin Yang, et al.
Veterinary Microbiology 177 (1-2) 175 (2015)
https://doi.org/10.1016/j.vetmic.2015.02.026

Immunological study of an attenuated Salmonella Typhimurium expressing ApxIA, ApxIIA, ApxIIIA and OmpA of Actinobacillus pleuropneumoniae in a mouse model

Jin HUR, Seong Kug EO, Sang-Youel PARK, Yoonyoung CHOI and John Hwa LEE
Journal of Veterinary Medical Science 77 (12) 1693 (2015)
https://doi.org/10.1292/jvms.14-0428

Actinobacillus pleuropneumoniae induces SJPL cell cycle arrest in G2/M-phase and inhibits porcine reproductive and respiratory syndrome virus replication

Jérémy A. Ferreira Barbosa, Josée Labrie, Francis Beaudry, Carl A. Gagnon and Mario Jacques
Virology Journal 12 (1) (2015)
https://doi.org/10.1186/s12985-015-0404-3

Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence

Jinlin Liu, Linlin Hu, Zhuofei Xu, et al.
Veterinary Microbiology 177 (1-2) 184 (2015)
https://doi.org/10.1016/j.vetmic.2015.02.033

Nasal immunization with M cell-targeting ligand-conjugated ApxIIA toxin fragment induces protective immunity against Actinobacillus pleuropneumoniae infection in a murine model

Jisang Park, Ki-Weon Seo, Sae-Hae Kim, et al.
Veterinary Microbiology 177 (1-2) 142 (2015)
https://doi.org/10.1016/j.vetmic.2015.03.005

Galleria mellonella is an effective model to study Actinobacillus pleuropneumoniae infection

Monalessa Fábia Pereira, Ciro César Rossi, Marisa Vieira de Queiroz, et al.
Microbiology 161 (2) 387 (2015)
https://doi.org/10.1099/mic.0.083923-0

Multiplex analysis of pro-inflammatory cytokines in serum of Actinobacillus pleuropneumoniae-infected pigs

H. Wyns, S. Croubels, M. Vandekerckhove, et al.
Research in Veterinary Science 102 45 (2015)
https://doi.org/10.1016/j.rvsc.2015.07.006

Prevalence and Characterization ofActinobacillus pleuropneumoniaeIsolated from Korean Pigs

Ki-Eun Lee, Hwan-Won Choi, Ha-Hyun Kim, Jae-Young Song and Dong-Kun Yang
Journal of Bacteriology and Virology 45 (1) 19 (2015)
https://doi.org/10.4167/jbv.2015.45.1.19

Identification and characterization of a novel stress-responsive outer membrane protein Lip40 from Actinobacillus pleuropneumoniae

Xuehe Hu, Hao Yan, Ke Liu, et al.
BMC Biotechnology 15 (1) (2015)
https://doi.org/10.1186/s12896-015-0199-8

Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae

Louise Brogaard, Kirstine Klitgaard, Peter MH Heegaard, et al.
BMC Genomics 16 (1) (2015)
https://doi.org/10.1186/s12864-015-1557-6

Effect of bovine apo-lactoferrin on the growth and virulence of Actinobacillus pleuropneumoniae

Sarahí Luna-Castro, Francisco Aguilar-Romero, Luisa Samaniego-Barrón, Delfino Godínez-Vargas and Mireya de la Garza
BioMetals 27 (5) 891 (2014)
https://doi.org/10.1007/s10534-014-9752-5

Deletion of the znuA virulence factor attenuates Actinobacillus pleuropneumoniae and confers protection against homologous or heterologous strain challenge

Fangyan Yuan, Yonghong Liao, Wujin You, et al.
Veterinary Microbiology 174 (3-4) 531 (2014)
https://doi.org/10.1016/j.vetmic.2014.10.016

Serotypes and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae isolates

A. N. Yoo, S. B. Cha, M. K. Shin, et al.
Veterinary Record 174 (9) 223 (2014)
https://doi.org/10.1136/vr.101863

Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine

Gerald Reiner, Felix Dreher, Mario Drungowski, et al.
Mammalian Genome 25 (11-12) 600 (2014)
https://doi.org/10.1007/s00335-014-9536-9

Simultaneous Detection of Antibodies against Apx Toxins ApxI, ApxII, ApxIII, and ApxIV in Pigs with Known and Unknown Actinobacillus pleuropneumoniae Exposure Using a Multiplexing Liquid Array Platform

Luis G. Giménez-Lirola, Yong-Hou Jiang, Dong Sun, et al.
Clinical and Vaccine Immunology 21 (1) 85 (2014)
https://doi.org/10.1128/CVI.00451-13

Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine

Gerald Reiner, Natalie Bertsch, Doris Hoeltig, et al.
Mammalian Genome 25 (3-4) 180 (2014)
https://doi.org/10.1007/s00335-013-9497-4

Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation

Lu Li, Jiawen Zhu, Kui Yang, et al.
Journal of Microbiology 52 (6) 473 (2014)
https://doi.org/10.1007/s12275-014-3456-y

Efficacy of vaccination against Actinobacillus pleuropneumoniae in two Belgian farrow‐to‐finish pig herds with a history of chronic pleurisy

R. Del Pozo Sacristán, A. Michiels, M. Martens, F. Haesebrouck and D. Maes
Veterinary Record 174 (12) 302 (2014)
https://doi.org/10.1136/vr.101961

Isolation ofActinobacillus pleuropneumoniaefrom Layer Hens Showing Clinical Signs of Infectious Coryza

V. M. Pérez Márquez, J. López Ochoa, C. Vázquez Cruz, et al.
Avian Diseases 58 (4) 638 (2014)
https://doi.org/10.1637/10798-021314-Case.1

Actinobacillus pleuropneumoniae Possesses an Antiviral Activity against Porcine Reproductive and Respiratory Syndrome Virus

Cynthia Lévesque, Chantale Provost, Josée Labrie, et al.
PLoS ONE 9 (5) e98434 (2014)
https://doi.org/10.1371/journal.pone.0098434

Nasal immunization with major epitope-containing ApxIIA toxin fragment induces protective immunity against challenge infection with Actinobacillus pleuropneumoniae in a murine model

Ki-Weon Seo, Sae-Hae Kim, Jisang Park, et al.
Veterinary Immunology and Immunopathology 151 (1-2) 102 (2013)
https://doi.org/10.1016/j.vetimm.2012.10.011

Adhesion Protein ApfA of Actinobacillus pleuropneumoniae Is Required for Pathogenesis and Is a Potential Target for Vaccine Development

Yang Zhou, Lu Li, Zhaohui Chen, et al.
Clinical and Vaccine Immunology 20 (2) 287 (2013)
https://doi.org/10.1128/CVI.00616-12

Detection of Actinobacillus pleuropneumoniae in drinking water from pig farms

Victor M. Loera-Muro, Mario Jacques, Yannick D. N. Tremblay, et al.
Microbiology 159 (Pt_3) 536 (2013)
https://doi.org/10.1099/mic.0.057992-0

Pharmacokinetics of tildipirosin in porcine plasma, lung tissue, and bronchial fluid and effects of test conditions on in vitro activity against reference strains and field isolates of Actinobacillus pleuropneumoniae

M. ROSE, M. MENGE, C. BOHLAND, et al.
Journal of Veterinary Pharmacology and Therapeutics 36 (2) 140 (2013)
https://doi.org/10.1111/j.1365-2885.2012.01397.x

The ClpP Protease Is Required for the Stress Tolerance and Biofilm Formation in Actinobacillus pleuropneumoniae

Fang Xie, Yanhe Zhang, Gang Li, et al.
PLoS ONE 8 (1) e53600 (2013)
https://doi.org/10.1371/journal.pone.0053600

Diferenciação de sorotipos de Actinobacillus pleuropneumoniae pela combinação de dois PCR multiplex

Lucas Fernando dos Santos, Klédna Constância Portes Reis, José Lúcio dos Santos and Maria Aparecida Scatamburlo
Ciência Rural 43 (5) 890 (2013)
https://doi.org/10.1590/S0103-84782013005000035

Method to grow Actinobacillus pleuropneumoniaebiofilm on a biotic surface

Yannick DN Tremblay, Cynthia Lévesque, Ruud PAM Segers and Mario Jacques
BMC Veterinary Research 9 (1) (2013)
https://doi.org/10.1186/1746-6148-9-213

Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria

C. Wu, J. Labrie, Y.D.N. Tremblay, et al.
Journal of Applied Microbiology 115 (1) 30 (2013)
https://doi.org/10.1111/jam.12197

Actinobacillus pleuropneumoniaegenes expression in biofilms cultured under static conditions and in a drip-flow apparatus

Yannick DN Tremblay, Vincent Deslandes and Mario Jacques
BMC Genomics 14 (1) (2013)
https://doi.org/10.1186/1471-2164-14-364

Experimental Identification of Actinobacillus pleuropneumoniae Strains L20 and JL03 Heptosyltransferases, Evidence for a New Heptosyltransferase Signature Sequence

Susana Merino, Yuriy A. Knirel, Miguel Regué, Juan M. Tomás and Yung-Fu Chang
PLoS ONE 8 (1) e55546 (2013)
https://doi.org/10.1371/journal.pone.0055546

Expression of secreted mucins (MUC2, MUC5AC, MUC5B, and MUC6) and membrane-bound mucin (MUC4) in the lungs of pigs experimentally infected with Actinobacillus pleuropneumoniae

Chung Hyun Kim, Yeonsu Oh, Kiwon Han, et al.
Research in Veterinary Science 92 (3) 486 (2012)
https://doi.org/10.1016/j.rvsc.2011.04.016

Draft Genome Sequence of Actinobacillus pleuropneumoniae Serotype 7 Strain S-8

Gang Li, Fang Xie, Yanhe Zhang and Chunlai Wang
Journal of Bacteriology 194 (23) 6606 (2012)
https://doi.org/10.1128/JB.01650-12

The genetic analysis of the flp locus of Actinobacillus pleuropneumoniae

Tingting Li, Zhuofei Xu, Tengfei Zhang, et al.
Archives of Microbiology 194 (3) 167 (2012)
https://doi.org/10.1007/s00203-011-0741-6

Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli

Shuhong Zhao, Mengjin Zhu and Hongbo Chen
Journal of Animal Science and Biotechnology 3 (1) (2012)
https://doi.org/10.1186/2049-1891-3-34

Type IV fimbrial subunit protein ApfA contributes to protection against porcine pleuropneumonia

Lenka Sadilkova, Jiri Nepereny, Vladimir Vrzal, Peter Sebo and Radim Osicka
Veterinary Research 43 (1) (2012)
https://doi.org/10.1186/1297-9716-43-2

Transcriptional Portrait of Actinobacillus pleuropneumoniae during Acute Disease - Potential Strategies for Survival and Persistence in the Host

Kirstine Klitgaard, Carsten Friis, Tim K. Jensen, et al.
PLoS ONE 7 (4) e35549 (2012)
https://doi.org/10.1371/journal.pone.0035549

Monoclonal Antibodies Against Actinobacillus pleuropneumoniae TonB2 Protein Expressed in Escherichia coli

Jinlin Liu, Jihong Yang, Bin Li, et al.
Hybridoma 31 (5) 347 (2012)
https://doi.org/10.1089/hyb.2012.0031

Antimicrobial Susceptibilities and Resistance Genes of Canadian Isolates ofActinobacillus pleuropneumoniae

Marie Archambault, Josée Harel, Julien Gouré, Yannick D.N. Tremblay and Mario Jacques
Microbial Drug Resistance 18 (2) 198 (2012)
https://doi.org/10.1089/mdr.2011.0150

Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1β, IL-8 and TNF-α in porcine alveolar macrophages

Zeng-Weng Chen, Maw-Sheng Chien, Nai-Yun Chang, et al.
Veterinary Research 42 (1) (2011)
https://doi.org/10.1186/1297-9716-42-25

Genomic Differences Between Actinobacillus pleuropneumoniae Serotypes 5b and 3 and their Distribution and Transcription Among 15 Serotypes

Feng Yang, Fang Xie, Yuwen Jiang, Suqing Li, Yanping Xing, Yu Wang, Xin Feng, Wenyu Han and Liancheng Lei
Current Microbiology 63 (4) (2011)
https://doi.org/10.1007/s00284-011-9986-1

Influences of ORF1 on the Virulence and Immunogenicity of Actinobacillus pleuropneumoniae

Fangyan Yuan, Jinlin Liu, Yi Guo, et al.
Current Microbiology 63 (6) 574 (2011)
https://doi.org/10.1007/s00284-011-0016-0

Proteomic and immunoproteomic characterization of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae

Falk FR Buettner, Sarah A Konze, Alexander Maas and Gerald F Gerlach
Proteome Science 9 (1) 23 (2011)
https://doi.org/10.1186/1477-5956-9-23

Novel genes associated with biofilm formation of Actinobacillus pleuropneumoniae

Alexandra Grasteau, Yannick D.N. Tremblay, Josée Labrie and Mario Jacques
Veterinary Microbiology 153 (1-2) 134 (2011)
https://doi.org/10.1016/j.vetmic.2011.03.029

Genome-wide evidence for positive selection and recombination in Actinobacillus pleuropneumoniae

Zhuofei Xu, Huanchun Chen and Rui Zhou
BMC Evolutionary Biology 11 (1) (2011)
https://doi.org/10.1186/1471-2148-11-203

Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism

Lu Li, Zhuofei Xu, Yang Zhou, et al.
Microbial Pathogenesis 50 (6) 293 (2011)
https://doi.org/10.1016/j.micpath.2011.02.002