Free Access
Review
Issue
Vet. Res.
Volume 41, Number 6, November–December 2010
Emerging and re-emerging animal viruses
Number of page(s) 14
DOI https://doi.org/10.1051/vetres/2010039
Published online 24 June 2010
How to cite this article Vet. Res. (2010) 41:67
  • Anderson J., Vossbrinck C., Andreadis T., Iton A., Beckwith W., Mayo D., Characterization of West Nile virus from five species of mosquitoes, nine species of birds, and one mammal, Ann. NY Acad. Sci. (2001) 951:328–331. [CrossRef] [Google Scholar]
  • Andrews D.M., Matthews V.B., Sammels L.M., Carrello A.C., McMinn P.C., The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system, J. Virol. (1999) 73:8781–8790. [PubMed] [Google Scholar]
  • Artsob H., Gubler D.J., Enria D.A., Morales M.A., Pupo M., Bunning M.L., Dudley J.P., West Nile virus in the New World: trends in the spread and proliferation of West Nile virus in the Western Hemisphere, Zoonoses Public Health (2009) 56:357–369. [CrossRef] [PubMed] [Google Scholar]
  • Asnis D.S., Conetta R., Teixeira A.A., Waldman G., Sampson B.A., The West Nile virus outbreak of 1999 in New York: the Flushing hospital experience, Clin. Infect. Dis. (2000) 30:413–418. [CrossRef] [PubMed] [Google Scholar]
  • Asnis D.S., Conetta R., Waldman G., Teixeira A.A., The West Nile virus encephalitis outbreak in the United States (1999–2000): from Flushing, New York, to beyond its borders, Ann. NY Acad. Sci. (2001) 951:161–171. [Google Scholar]
  • Banet-Noach C., Malkinson M., Brill A., Samina I., Yadin H., Weisman Y., et al., Phylogenetic relationships of West Nile virus isolated from birds and horses in Israel from 1997–2001, Virus Genes (2003) 26:135–141. [CrossRef] [PubMed] [Google Scholar]
  • Baqar S., Hayes C.G., Murphy J.R., Watts D.M., Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes, Am. J. Trop. Med. Hyg. (1993) 48:757–762. [Google Scholar]
  • Barrera R., Hunsperger E., Muñoz-Jordán J.L., Amador M., Diaz A., Smith J., et al., First isolation of West Nile virus in the Caribbean, Am. J. Trop. Med. Hyg. (2008) 78:666–668. [PubMed] [Google Scholar]
  • Beasley D.W.C., Li L., Suderman M.T., Barrett A.D., West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations, Ann. NY Acad. Sci. (2001) 951:332–335. [CrossRef] [Google Scholar]
  • Beasley D.W.C., Li L., Suderman M., Barrett A., Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype, Virology (2002) 296:17–23. [CrossRef] [PubMed] [Google Scholar]
  • Beasley D.W.C., Davis C.T., Guzman H., Vanlandingham D.L., Travassos da Rosa A.P.A., Parsons R.E., et al., Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States, Virology (2003) 309:190–195. [CrossRef] [PubMed] [Google Scholar]
  • Beasley D.W.C., Whiteman M.C., Zhang S., Huang C.Y.-H., Schneider B.S., Smith D.R., et al., Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains, J. Virol. (2005) 79:8339–8347. [CrossRef] [PubMed] [Google Scholar]
  • Bernard K.A., Kramer L.D., West Nile virus activity in the United States, 2001, Viral Immunol. (2001) 14:319–338. [CrossRef] [PubMed] [Google Scholar]
  • Bernard K.A., Maffei J.G., Jones S.A., Kauffman E.B., Ebel G., Dupuis A.P., et al., West Nile virus infection in birds and mosquitoes, New York State, 2000, Emerg. Infect. Dis. (2001) 7:679–685. [CrossRef] [PubMed] [Google Scholar]
  • Bernkopf H., Levine S., Nerson R., Isolation of West Nile virus in Israel, J. Infect. Dis. (1953) 93:207–218. [Google Scholar]
  • Berthet F.X., Zeller H.G., Drouet M.T., Rauzier J., Digoutte J.P., Deubel V., Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses, J. Gen. Virol. (1997) 78:2293–2297. [PubMed] [Google Scholar]
  • Bin H., Grossman Z., Pokamunski S., Malkinson M., Weiss L., Duvdevani P., et al., West Nile fever in Israel 1999–2000: from geese to humans, Ann. NY Acad. Sci. (2001) 951:127–142. [Google Scholar]
  • Blitvich B.J., Fernandez-Salas I., Contreras-Cordero J.F., Marlenee N.L., Gonzalez-Rojas J.I., Komar N., et al., Serologic evidence of West Nile virus infection in horses, Coahuila State, Mexico, Emerg. Infect. Dis. (2003) 9:853–856. [PubMed] [Google Scholar]
  • Bondre V.P., Jadi R.S., Mishra A.C., Yergolkar P.N., Arankalle V.A., West Nile virus isolates from India: evidence for a distinct genetic lineage, J. Gen. Virol. (2007) 88:875–884. [CrossRef] [PubMed] [Google Scholar]
  • Bosch I., Herrera F., Navarro J.-C., Lentino M., Dupuis A., Maffei J., et al., West Nile virus, Venezuela, Emerg. Infect. Dis. (2007) 13:651–653. [CrossRef] [PubMed] [Google Scholar]
  • Botha E.M., Markotter W., Wolfaardt M., Paweska J.T., Swanepoel R., Palacios G., et al., Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains, Emerg. Infect. Dis. (2008) 14:222–230. [CrossRef] [PubMed] [Google Scholar]
  • Brault A., Huang C., Langevin S., Kinney R., Bowen R., Ramey W., et al., A single positively selected West Nile viral mutation confers increased virogenesis in American crows, Nat. Genet. (2007) 39:1162–1166. [CrossRef] [PubMed] [Google Scholar]
  • Brault A.C., Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility, Vet. Res. (2009) 40:1–19. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Briese T., Jia X.Y., Huang C., Grady L.J., Lipkin W.I., Identification of a Kunjin/West Nile-like flavivirus in brains of patients with New York encephalitis, Lancet (1999) 354:1261–1262. [CrossRef] [PubMed] [Google Scholar]
  • Brinton M., The molecular biology of West Nile virus: a new invader of the Western Hemisphere, Annu. Rev. Microbiol. (2002) 56:371–402. [CrossRef] [PubMed] [Google Scholar]
  • Calisher C.H., Gould E.A., Taxonomy of the virus family Flaviviridae, Adv. Virus Res. (2003) 59:1–19. [Google Scholar]
  • Campbell G.L., Ceianu C.S., Savage H.M., Epidemic West Nile encephalitis in Romania: waiting for history to repeat itself, Ann. NY Acad. Sci. (2001) 951:94–101. [CrossRef] [Google Scholar]
  • CDC, Outbreak of West Nile-like viral encephalitis – New York, 1999, MMWR Morb. Mortal. Wkly Rep. (1999) 48:845–849. [PubMed] [Google Scholar]
  • CDC, Update: surveillance for West Nile virus in overwintering mosquitoes – New York, 2000, MMWR Morb. Mortal. Wkly Rep. (2000) 49:178–179. [PubMed] [Google Scholar]
  • CDC, Possible West Nile virus transmission to an infant Through breast-feeding – Michigan, 2000, MMWR Morb. Mortal. Wkly Rep. (2002) 51:877–878. [PubMed] [Google Scholar]
  • CDC, Intrauterine West Nile virus infection – New York, 2002, MMWR Morb. Mortal. Wkly Rep. (2002) 51:1135–1136. [PubMed] [Google Scholar]
  • Chambers T.J., Halevy M., Nestorowicz A., Rice C.M., Lustig S., West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness, J. Gen. Virol. (1998) 79:2375–2380. [PubMed] [Google Scholar]
  • Chambers T.J., Nickells M., Neuroadapted yellow fever virus 17D: genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone, J. Virol. (2001) 75:10912–10922. [CrossRef] [PubMed] [Google Scholar]
  • Chambers T.J., Diamond M.S., Pathogenesis of flavivirus encephalitis, Adv. Virus Res. (2003) 60:273–342. [CrossRef] [PubMed] [Google Scholar]
  • Charatan F., Organ transplants and blood transfusions may transmit West Nile virus, BMJ (2002) 325:566. [Google Scholar]
  • Charrel R.N., Brault A.C., Gallian P., Lemasson J.-J., Murgue B., Murri S., et al., Evolutionary relationship between Old World West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe, Virology (2003) 315:381–388. [Google Scholar]
  • Chaturvedi U.C., Dhawan R., Khanna M., Mathur A., Breakdown of the blood-brain barrier during dengue virus infection of mice, J. Gen. Virol. (1991) 72:859–866. [CrossRef] [PubMed] [Google Scholar]
  • Chowers M.Y., Lang R., Nassar F., Ben-David D., Giladi M., Rubinshtein E., et al., Clinical characteristics of the West Nile fever outbreak, Israel, 2000, Emerg. Infect. Dis. (2001) 7:675–678. [Google Scholar]
  • Cruz L., Cardenas V.M., Abarca M., Rodriguez T., Reyna R.F., Serpas M.V., et al., Short report: serological evidence of West Nile virus activity in El Salvador, Am. J. Trop. Med. Hyg. (2005) 72:612–615. [PubMed] [Google Scholar]
  • Davis C., Beasley D., Guzman H., Siirin M., Parsons R., Tesh R., Barrett A., Emergence of attenuated West Nile virus variants in Texas, 2003, Virology (2004) 330:342–350. [CrossRef] [PubMed] [Google Scholar]
  • Davis C., Ebel G., Lanciotti R., Brault A., Guzman H., Siirin M., et al., Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype, Virology (2005) 342:252–265. [CrossRef] [PubMed] [Google Scholar]
  • Davis L.E., DeBiasi R., Goade D.E., Haaland K.Y., Harrington J.A., Harnar J.B., et al., West Nile virus neuroinvasive disease, Ann. Neurol. (2006) 60:286–300. [CrossRef] [PubMed] [Google Scholar]
  • Desprès P., Frenkiel M.P., Ceccaldi P.E., Duarte Dos Santos C., Deubel V., Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses, J. Virol. (1998) 72:823–829. [PubMed] [Google Scholar]
  • Diamond M., Madhani H., Virus and host determinants of West Nile virus pathogenesis, PLoS Pathog. (2009) 5:e1000452. [Google Scholar]
  • Diaz A., Komar N., Visintin A., West Nile virus in birds, Argentina, Emerg. Infect. Dis. (2008) 14:689–691. [CrossRef] [PubMed] [Google Scholar]
  • Drebot M.A., Lindsay R., Barker I.K., Buck P.A., Fearon M., Hunter F., et al., West Nile virus surveillance and diagnostics: a Canadian perspective, J. Can. Infect. Dis. (2003) 14:105–114. [Google Scholar]
  • Dupuis A.P., Marra P.P., Kramer L.D., Serologic evidence of West Nile virus transmission, Jamaica, West Indies, Emerg. Infect. Dis. (2003) 9:860–863. [Google Scholar]
  • Ebel G.D., Carricaburu J., Young D., Bernard K., Kramer L.D., Genetic and phenotypic variation of West Nile virus in New York, 2000–2003, Am. J. Trop. Med. Hyg. (2004) 71:493–500. [PubMed] [Google Scholar]
  • Fagbami A., Human arthropod-borne virus infections in Nigeria. Serological and virological investigations and Shaki, Oyo State, J. Hyg. Epidemiol. Microbiol. Immunol. (1978) 22:184–189. [PubMed] [Google Scholar]
  • Fredericksen B.L., Smith M., Katze M.G., Shi P.-Y., Gale M., The host response to West Nile virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway, J. Virol. (2004) 78:7737–7747. [CrossRef] [PubMed] [Google Scholar]
  • German A., Myint K., Mai N., Pomeroy I., Phu N., Tzartos J., et al., A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model, Trans. R. Soc. Trop. Med. Hyg. (2006) 100:1135–1145. [CrossRef] [PubMed] [Google Scholar]
  • Giladi M., Metzkor-Cotter E., Martin D.A., Siegman-Igra Y., Korczyn A.D., Rosso R., et al., West Nile encephalitis in Israel, 1999: the New York connection, Emerg. Infect. Dis. (2001) 7:659–661. [CrossRef] [PubMed] [Google Scholar]
  • Granwehr B., Lillibridge K., Higgs S., Mason P., Aronson J., Campbell G., Barrett A., West Nile virus: where are we now?, Lancet Infect. Dis. (2004) 4:547–556. [CrossRef] [PubMed] [Google Scholar]
  • Gubler D.J., Emerging infections: the continuing spread of West Nile virus in the Western Hemisphere, Clin. Infect. Dis. (2007) 45:1039–1046. [CrossRef] [PubMed] [Google Scholar]
  • Guo J.-T., Hayashi J., Seeger C., West Nile virus inhibits the signal transduction pathway of alpha interferon, J. Virol. (2005) 79:1343–1350. [CrossRef] [PubMed] [Google Scholar]
  • Hall R.A., Scherret J.H., Mackenzie J.S., Kunjin virus: an Australian variant of West Nile?, Ann. NY Acad. Sci. (2001) 951:153–160. [CrossRef] [Google Scholar]
  • Hayes E.B., Gubler D., West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States, Annu. Rev. Med. (2006) 57:181–194. [Google Scholar]
  • Hayes E.B., Komar N., Nasci R.S., Montgomery S.P., O’Leary D.R., Campbell G.L., Epidemiology and transmission dynamics of West Nile virus disease, Emerg. Infect. Dis. (2005) 11:1167–1173. [Google Scholar]
  • Hayes E.B., Sejvar J.J., Zaki S.R., Lanciotti R.S., Bode A.V., Campbell G.L., Virology, pathology, and clinical manifestations of West Nile virus disease, Emerg. Infect. Dis. (2005) 11:1174–1179. [PubMed] [Google Scholar]
  • Higgs S., Schneider B.S., Vanlandingham D.L., Klingler K.A., Gould E.A., Nonviremic transmission of West Nile virus, Proc. Natl. Acad. Sci. USA (2005) 102:8871–8874. [CrossRef] [Google Scholar]
  • Hubálek Z., Halouzka J., West Nile fever – a reemerging mosquito-borne viral disease in Europe, Emerg. Infect. Dis. (1999) 5:643–650. [CrossRef] [PubMed] [Google Scholar]
  • Hubálek Z., Mosquito-borne viruses in Europe, Parasitol. Res. (2008) 103:Suppl. 1: S29–S43. [Google Scholar]
  • Hunsperger E., Roehrig J., Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice, J. Neurovirol. (2006) 12:129–139. [CrossRef] [PubMed] [Google Scholar]
  • Hurlbut H., West Nile virus infection in arthropods, Am. J. Trop. Med. Hyg. (1956) 5:76–85. [PubMed] [Google Scholar]
  • Hutcheson H.J., Gorham C.H., Machain-Williams C., Loroño-Pino M.A., James A.M., Marlenee N.L., et al., Experimental transmission of West Nile virus (Flaviviridae: Flavivirus) by Carios capensis ticks from North America, Vector Borne Zoonotic Dis. (2005) 5:293–295. [CrossRef] [PubMed] [Google Scholar]
  • Ilkal M.A., Mavale M.S., Prasanna Y., Jacob P.G., Geevarghese G., Banerjee K., Experimental studies on the vector potential of certain Culex species to West Nile virus, Indian J. Med. Res. (1997) 106:225–228. [PubMed] [Google Scholar]
  • Jia X.Y., Briese T., Jordan I., Rambaut A., Chi H.C., MacKenzie J.S., et al., Genetic analysis of West Nile New York 1999 encephalitis virus, Lancet (1999) 354:1971–1972. [CrossRef] [PubMed] [Google Scholar]
  • Jones M., Davidson A., Hibbert L., Gruenwald P., Schlaak J., Ball S., et al., Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression, J. Virol. (2005) 79:5414–5420. [CrossRef] [PubMed] [Google Scholar]
  • Joubert L., Oudar J., Hannoun C., Beytout D., Corniou B., Guillon G.C., Panthier R., Epidemiology of the West Nile virus: study of a focus in Camargue. IV. Meningo-encephalomyelitis of the horse, Ann. Inst. Pasteur (Paris) (1970) 118:239–247. [Google Scholar]
  • Jupp P.G., The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans, Ann. NY Acad. Sci. (2001) 951:143–152. [Google Scholar]
  • Kajaste-Rudnitski A., Mashimo T., Frenkiel M.-P., Guénet J.-L., Lucas M., Desprès P., The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells, J. Biol. Chem. (2006) 281:4624–4637. [CrossRef] [PubMed] [Google Scholar]
  • Kanamitsu M., Taniguchi K., Urasawa S., Ogata T., Wada Y., Wada Y., Saroso J.S., Geographic distribution of arbovirus antibodies in indigenous human populations in the Indo-Australian Archipelago, Am. J. Trop. Med. Hyg. (1979) 28:351–363. [PubMed] [Google Scholar]
  • Kilpatrick A.M., Meola M.A., Moudy R.M., Kramer L.D., Buchmeier M.J., Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes, PLoS Pathog. (2008) 4:e1000092. [Google Scholar]
  • King N.J.C., Getts D.R., Getts M.T., Rana S., Shrestha B., Kesson A.M., Immunopathology of flavivirus infections, Immunol. Cell Biol. (2007) 85:33–42. [CrossRef] [PubMed] [Google Scholar]
  • Klee A.L., Maidin B., Edwin B., Poshni I., Mostashari F., Fine A., et al., Long-term prognosis for clinical West Nile virus infection, Emerg. Infect. Dis. (2004) 10:1405–1411. [PubMed] [Google Scholar]
  • Klein R.S., Lin E., Zhang B., Luster A.D., Tollett J., Samuel M.A., et al., Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis, J. Virol. (2005) 79:11457–11466. [CrossRef] [PubMed] [Google Scholar]
  • Klenk K., Snow J., Morgan K., Bowen R., Stephens M., Foster F., et al., Alligators as West Nile virus amplifiers, Emerg. Infect. Dis. (2004) 10:2150–2155. [Google Scholar]
  • Koh W.-L., Ng M.-L., Molecular mechanisms of West Nile virus pathogenesis in brain cell, Emerg. Infect. Dis. (2005) 11:629–632. [PubMed] [Google Scholar]
  • Komar N., Langevin S., Hinten S., Nemeth N., Edwards E., Hettler D., et al., Experimental infection of North American birds with the New York 1999 strain of West Nile virus, Emerg. Infect. Dis. (2003) 9:311–322. [Google Scholar]
  • Komar N., Clark G.G., West Nile virus activity in Latin America and the Carribean, Rev. Panam. Salud Publica (2006) 19:112–117. [PubMed] [Google Scholar]
  • Kong K., Delroux K., Wang X., Qian F., Arjona A., Malawista S., et al., Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly, J. Virol. (2008) 82:7613–7623. [CrossRef] [PubMed] [Google Scholar]
  • Krisztalovics K., Ferenczi E., Molnar Z., Csohan A., Ban E., Zoldi V., Kaszas K., West Nile virus infections in Hungary, August–September 2008, Euro Surveill. (2008) 13:pii: 19030. [Google Scholar]
  • Kulasekera V.L., Kramer L., Nasci R.S., Mostashari F., Cherry B., Trock S.C., et al., West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000, Emerg. Infect. Dis. (2001) 7:722–725. [CrossRef] [PubMed] [Google Scholar]
  • Kumar D., Prasad G., Zaltzman J., Levy G., Humar A., Community-aquired West Nile virus infection in solid-organ transplant recipients, Transplantation (2004) 77:399–402. [CrossRef] [PubMed] [Google Scholar]
  • Lanciotti R.S., Roehrig J.T., Deubel V., Smith J., Parker M., Steele K., et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the Northeastern United States, Science (1999) 286:2333–2337. [CrossRef] [PubMed] [Google Scholar]
  • Le Guenno B., West Nile: a deadly virus?, Lancet (1996) 348:1315. [PubMed] [Google Scholar]
  • Lefrançois T., Blitvich B.J., Pradel J., Molia S., Vachiéry N., Pallavicini G., et al., West Nile virus surveillance, Guadeloupe, 2003–2004, Emerg. Infect. Dis. (2005) 11:1100–1103. [PubMed] [Google Scholar]
  • Li J., Loeb J.A., Shy M.E., Shah A.K., Tselis A.C., Kupski W.J., Lewis R.A., Asymmetric flaccid paralysis: a neuromuscular presentation of West Nile virus infection, Ann. Neurol. (2003) 53:703–710. [CrossRef] [PubMed] [Google Scholar]
  • Liao C.L., Lin Y.L., Shen S.C., Shen J.Y., Su H.L., Huang Y.L., et al., Antiapoptotic but not antiviral function of human bcl-2 assists establishment of Japanese encephalitis virus persistence in cultured cells, J. Virol. (1998) 72:9844–9854. [PubMed] [Google Scholar]
  • Licon Luna R.M., Lee E., Müllbacher A., Blanden R.V., Langman R., Lobigs M., Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice, J. Virol. (2002) 76:3202–3211. [CrossRef] [PubMed] [Google Scholar]
  • Lim J., Lisco A., McDermott D., Huynh L., Ward J., Johnson B., et al., Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man, PLoS Pathog. (2009) 5:e1000321. [Google Scholar]
  • Lin R.-J., Liao C.-L., Lin E., Lin Y.-L., Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection, J. Virol. (2004) 78:9285–9294. [CrossRef] [PubMed] [Google Scholar]
  • Lin R.-J., Chang B.-L., Yu H.-P., Liao C.-L., Lin Y.-L., Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism, J. Virol. (2006) 80:5908–5918. [CrossRef] [PubMed] [Google Scholar]
  • Lindenbach B., Thiel H.J., Rice C.M., Flaviviridae: The viruses ad their replication, in: Knipe D.M., Howley P.M. (Eds.), Fields virology, Lippincott Williams & Wilkins, Philadelphia, 2007, pp. 1101–1152. [Google Scholar]
  • Liou M.L., Hsu C.Y., Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain, Cell Tissue Res. (1998) 293:389–394. [CrossRef] [PubMed] [Google Scholar]
  • Liu W.J., Chen H.B., Wang X.J., Huang H., KhromykhA., Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription, J. Virol. (2004) 78:12225–12235. [CrossRef] [PubMed] [Google Scholar]
  • Liu W.J., Wang X.J., Mokhonov V.V., Shi P.-Y., Randall R., Khromykh A.A., Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins, J. Virol. (2005) 79:1934–1942. [CrossRef] [PubMed] [Google Scholar]
  • Liu W.J., Wang X.J., Clark D., Lobigs M., Hall R., Khromykh A., A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice, J. Virol. (2006) 80:2396–2404. [CrossRef] [PubMed] [Google Scholar]
  • Lucas M., Mashimo T., Frenkiel M.-P., Simon-Chazottes D., Montagutelli X., Ceccaldi P.-E., et al., Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2′–5′ oligoadenylate synthetase 1b protein, Immunol. Cell Biol. (2003) 81:230–236. [CrossRef] [PubMed] [Google Scholar]
  • Lvov D.K., Butenko A.M., Gromashevsky V.L., Larichev V.P., Gaidamovich S.Y., Vyshemirsky O.I., et al., Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999, Emerg. Infect. Dis. (2000) 6:373–376. [CrossRef] [PubMed] [Google Scholar]
  • Macdonald J., Tonry J., Hall R.A., Williams B., Palacios G., Ashok M.S., et al., NS1 protein secretion during the acute phase of West Nile virus infection, J. Virol. (2005) 79:13924–13933. [CrossRef] [PubMed] [Google Scholar]
  • Mackenzie J.S., Barrett A.D., Deubel V., The Japanese encephalitis serological group of flaviviruses: a brief introduction to the group, Curr. Top. Microbiol. Immunol. (2002) 267:1–10. [PubMed] [Google Scholar]
  • Marfin A.A., Bleed D.M., Lofgren J.P., Olin A.C., Savage H.M., Smith G.C., et al., Epidemiologic aspects of a St. Louis encephalitis epidemic in Jefferson County Arkansas, 1991, Am. J. Trop. Med. Hyg. (1993) 49:30–37. [PubMed] [Google Scholar]
  • Mashimo T., Lucas M., Simon-Chazottes D., Frenkiel M., Montagutelli X., Ceccaldi P., et al., A nonsense mutation in the gene encoding 2′–5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proc. Natl. Acad. Sci. USA (2002) 99:11311–11316. [CrossRef] [Google Scholar]
  • Matthews V., Robertson T., Kendrick T., Abdo M., Papadimitriou J., McMinn P., Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice, Int. J. Exp. Pathol. (2000) 81:31–40. [CrossRef] [PubMed] [Google Scholar]
  • McIntosh B., Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) univittatus Theobald as vector, S. Afr. J. Sci. (1976) 72:295–300. [Google Scholar]
  • McMinn P.C., Dalgarno L., Weir R.C., A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation, Virology (1996) 220:414–423. [CrossRef] [PubMed] [Google Scholar]
  • McMinn P.C., The molecular basis of virulence of the encephalitogenic flaviviruses, J. Gen. Virol. (1997) 78:2711–2722. [PubMed] [Google Scholar]
  • Melian E., Hinzman E., Nagasaki T., Firth A., Wills N., Nouwens A., et al., NS1’ of flaviviruses in the Japanese encephalitis serogroup is a product of ribosomal frameshifting and plays a role in viral neuro-invasiveness, J. Virol. (2009) 84:1641–1647. [CrossRef] [PubMed] [Google Scholar]
  • Mertens E., Kajaste-Rudnitski A., Torres S., Funk A., Frenkiel M.-P., Iteman I., et al., Viral determinants in the NS3 helicase and 2K peptide that promote West Nile virus resistance to antiviral action of 2′,5′-oligoadenylate synthetase 1b, Virology (2010) 399:1–10. [CrossRef] [PubMed] [Google Scholar]
  • Miller B.R., Nasci R.S., Godsey M.S., Savage H.M., Lutwama J.J., Lanciotti R.S., Peters C.J., First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley province, Kenya, Am. J. Trop. Med. Hyg. (2000) 62:240–246. [Google Scholar]
  • Miller D.L., Mauel M.J., Baldwin C., Burtle G., Ingram D., Hines M.E., Frazier K.S., West Nile virus in farmed alligators, Emerg. Infect. Dis. (2003) 9:794–799. [PubMed] [Google Scholar]
  • Monath T., Cropp C., Harrison A., Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy, Lab. Invest. (1983) 48:399–410. [PubMed] [Google Scholar]
  • Morales M.A., Barrandeguy M., Fabbri C., Garcia J.B., Vissani A., Trono K., et al., West Nile virus isolation from equines in Argentina, 2006, Emerg. Infect. Dis. (2006) 12:1559–1561. [Google Scholar]
  • Mostashari F., Bunning M., Kitsutani P., Singer D., Nash D., Cooper M., et al., Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey, Lancet (2001) 358:261–264. [CrossRef] [PubMed] [Google Scholar]
  • Moudy R., Meola M., Morin L.L., Ebel G.D., Kramer L.D., A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes, Am. J. Trop. Med. Hyg. (2007) 77:365–370. [PubMed] [Google Scholar]
  • Müllbacher A., Lobigs M., Lee E., Immunobiology of mosquito-borne encephalitic flaviviruses, Adv. Virus Res. (2003) 60:87–120. [CrossRef] [PubMed] [Google Scholar]
  • Munoz-Jordan J., Sanchez-Burgos G., Laurent-Rolle M., Garcia-Sastre A., Inhibition of interferon signaling by dengue virus, Proc. Natl. Acad. Sci. USA (2003) 100:14333–14338. [CrossRef] [Google Scholar]
  • Muñoz-Jordán J.L., Laurent-Rolle M., Ashour J., Martínez-Sobrido L., Ashok M., Lipkin W.I., García-Sastre A., Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses, J. Virol. (2005) 79:8004–8013. [CrossRef] [PubMed] [Google Scholar]
  • Murgue B., Murri S., Triki H., Deubel V., Zeller H.G., West Nile in the Mediterranean Basin: 1950–2000, Ann. NY Acad. Sci. (2001) 951:117–126. [Google Scholar]
  • Murray K.O., Baraniuk S., Resnick M., Arafat R., Kilborn C., Cain K., et al., Risk factors for encephalitis and death from West Nile virus infection, Epidemiol. Infect. (2006) 134:1325–1332. [CrossRef] [PubMed] [Google Scholar]
  • Murray K.O., Resnick M., Miller V., Depression after infection with West Nile virus, Emerg. Infect. Dis. (2007) 13:479–481. [CrossRef] [PubMed] [Google Scholar]
  • Murray K.O., Baraniuk S., Resnick M., Arafat R., Kilborn C., Shallenberger R., et al., Clinical investigation of hospitalized human cases of West Nile virus infection in Houston, Texas, 2002–2004, Vector Borne Zoonotic Dis. (2008) 8:167–174. [CrossRef] [PubMed] [Google Scholar]
  • Murray K.O., Koers E., Baraniuk S., Herrington E., Carter H., Sierra M., et al., Risk factors for encephalitis from West Nile virus: a matched case-control study using hospitalized controls, Zoonoses Public Health (2009) 56:370–375. [CrossRef] [PubMed] [Google Scholar]
  • Murray K.O, Walker C., Herrington E., Lewis J.A., McCormick J., Beasley D.W.C., et al., Persistent infection with West Nile virus years after initial infection, J. Infect. Dis. (2010) 201:2–4. [Google Scholar]
  • Nasci R.S., Savage H.M., White D.J., Miller J.R., Cropp B.C., Godsey M.S., et al., West Nile virus in overwintering Culex mosquitoes, New York City, 2000, Emerg. Infect. Dis. (2001) 7:742–744. [CrossRef] [PubMed] [Google Scholar]
  • Nasci R.S., White D.J., Stirling H., Oliver J.A., Daniels T.J., Falco R.C., et al., West Nile virus isolates from mosquitoes in New York and New Jersey, 1999, Emerg. Infect. Dis. (2001) 7:626–630. [Google Scholar]
  • Nash D., Mostashari F., Fine A., Miller J., O’Leary D., Murray K., et al., The outbreak of West Nile virus infection in the New York City area in 1999, N. Engl. J. Med. (2001) 344:1807–1814. [Google Scholar]
  • Nunes Duarte Dos Santos C., Determinants in the envelope E protein and viral RNA helicase NS3 that influence the induction of apoptosis in response to infection with dengue type 1 virus, Virology (2000) 274:292–308. [CrossRef] [PubMed] [Google Scholar]
  • Oesterle P., Nemeth N., Young G., Mooers N., Elmore S., Bowen R., et al., Cliff swallows, swallow bugs, and West Nile virus: an unlikely transmission mechanism, Vector Borne Zoonotic Dis. (2010) 10:507–513. [CrossRef] [PubMed] [Google Scholar]
  • Panthier R., Hannoun C., Beytout D., Mouchet J., Epidemiology of West Nile virus. Study of a center in Camargue. 3.-Human diseases, Ann. Inst. Pasteur (Paris) (1968) 115:435–445. [PubMed] [Google Scholar]
  • Parquet M.C., Kumatori A., Hasebe F., Morita K., Igarashi A., West Nile virus-induced bax-dependent apoptosis, FEBS Lett. (2001) 500:17–24. [CrossRef] [PubMed] [Google Scholar]
  • Perelygin A., Scherbik S.V., Zhulin I.B., Stockman B.M., Li Y., Brinton M.A., Positional cloning of the murine flavivirus resistance gene, Proc. Natl. Acad. Sci. USA (2002) 99:9322–9327. [CrossRef] [Google Scholar]
  • Petersen L.R., Roehrig J.T., West Nile virus: a reemerging global pathogen, Emerg. Infect. Dis. (2001) 7:611–614. [Google Scholar]
  • Petersen L.R., Hayes E.B., West Nile virus in the Americas, Med. Clin. North Am. (2008) 92:1307–1322. [CrossRef] [PubMed] [Google Scholar]
  • Platonov A.E., Shipulin G.A., Shipulina O.Y., Tyutyunnik E.N., Frolochkina T.I., Lanciotti R.S., et al., Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999, Emerg. Infect. Dis. (2001) 7:128–132. [CrossRef] [PubMed] [Google Scholar]
  • Platt K., Tucker B., Halbur P., Blitvich B., Fabiosa F., Mullin K., et al., Fox squirrels (Sciurus niger) develop West Nile virus viremias sufficient for infecting select mosquito species, Vector Borne Zoonotic Dis. (2008) 8:225–234. [CrossRef] [PubMed] [Google Scholar]
  • Poidinger M., Hall R.A., MacKenzie J.S., Molecular characterization of the Japanese encephalitis serocomplex of the flavivirus genus, Virology (1996) 218:417–421. [CrossRef] [PubMed] [Google Scholar]
  • Pupo M., Guzmán M.G., Fernández R., Llop A., Dickinson F.O., Pérez D., et al., West Nile virus infection in humans and horses, Cuba, Emerg. Infect. Dis. (2006) 12:1022–1024. [Google Scholar]
  • Rappole J.H., Derrickson S.R., Hubálek Z., Migratory birds and spread of West Nile virus in the Western Hemisphere, Emerg. Infect. Dis. (2000) 6:319–328. [Google Scholar]
  • Rappole J.H., Hubálek Z., Migratory birds and West Nile virus, J. Appl. Microbiol. (2003) 94 Suppl:47S–58S. [Google Scholar]
  • Reisen W., Fang Y., Lothrop H., Martinez V., Wilson J., Oconnor P., et al., Overwintering of West Nile virus in Southern California, J. Med. Entomol. (2006) 43:344–355. [CrossRef] [PubMed] [Google Scholar]
  • Rios J.J., Fleming J.G.W., Bryant U.K., Carter C.N., Huber J.C., Long M.T., et al., OAS1 polymorphisms are associated with susceptibility to West Nile encephalitis in horses, PLoS ONE (2010) 5:e10537. [Google Scholar]
  • Sampson B.A., Armbrustmacher V., West Nile encephalitis: the neuropathology of four fatalities, Ann. NY Acad. Sci. (2001) 951:172–178. [Google Scholar]
  • Samuel C.E., Host genetic variability and West Nile virus susceptibility, Proc. Natl. Acad. Sci. USA (2002) 99:11555–11557. [CrossRef] [Google Scholar]
  • Samuel M., Diamond M.S., Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion, J. Virol. (2006) 80:9349–9360. [Google Scholar]
  • Schneider B., Higgs S., The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response, Trans. R. Soc. Trop. Med. Hyg. (2008) 102:400–408. [CrossRef] [PubMed] [Google Scholar]
  • Schneider B.S., Soong L., Girard Y.A., Campbell G., Mason P., Higgs S., Potentiation of West Nile encephalitis by mosquito feeding, Viral Immunol. (2006) 19:74–82. [CrossRef] [PubMed] [Google Scholar]
  • Sejvar J.J., Leis A.A., Stokic D.S., Van Gerpen J.A., Marfin A.A., Webb R., et al., Acute flaccid paralysis and West Nile virus infection, Emerg. Infect. Dis. (2003) 9:788–793. [PubMed] [Google Scholar]
  • Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I., Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus, J. Gen. Virol. (2004) 85:3637–3645. [CrossRef] [PubMed] [Google Scholar]
  • Shrestha B., Gottlieb D., Diamond M.S., Infection and injury of neurons by West Nile encephalitis virus, J. Virol. (2003) 77:13203–13213. [CrossRef] [PubMed] [Google Scholar]
  • Shrestha B., Zhang B., Purtha W., Klein R., Diamond M., Tumor necrosis Factor Alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system, J. Virol. (2008) 82:8956–8964. [CrossRef] [PubMed] [Google Scholar]
  • Siegel-Itzkovich J., Twelve die of West Nile virus in Israel, BMJ (2000) 321:724. [Google Scholar]
  • Silverman R.H., Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response, J. Virol. (2007) 81:12720–12729. [CrossRef] [PubMed] [Google Scholar]
  • Smithburn K.C., Hughs T.P., Burke A.W., Paul J.H., A neurotropic virus isolated from the blood of a native of Uganda, Am. J. Trop. Med. Hyg. (1940) 20:471–492. [Google Scholar]
  • Snapinn K.W., Holmes E.C., Young D.S., Bernard K.A., Kramer L.D., Ebel G.D., Declining growth rate of West Nile virus in North America, J. Virol. (2006) 81:2531–2534. [CrossRef] [PubMed] [Google Scholar]
  • Suthar M., Gale Jr M., Owen D., Evasion and disruption of innate immune signalling by hepatitis C and West Nile viruses, Cell. Microbiol. (2009) 11:880–888. [CrossRef] [PubMed] [Google Scholar]
  • Tatsumi R., Sekiya S., Nakanishi R., Mizutani M., Kojima S.-I., Sokawa Y., Function of ubiquitin-like domain of chicken 2′–5′-oligoadenylate synthetase in conformational stability, J. Interferon Cytokine Res. (2003) 23:667–676. [CrossRef] [PubMed] [Google Scholar]
  • Taylor R., Work T., Hurlbut H., Risk F., A study of the ecology of West Nile virus in Egypt, Am. J. Trop. Med. Hyg. (1956) 5:579–620. [Google Scholar]
  • Tsai T.F., Popovici F., Cernescu C., Campbell G.L., Nedelcu N.I., West Nile encephalitis epidemic in southeastern Romania, Lancet (1998) 352:767–771. [CrossRef] [PubMed] [Google Scholar]
  • Turell M.J., O’Guinn M., Oliver J., Potential for New York mosquitoes to transmit West Nile virus, Am. J. Trop. Med. Hyg. (2000) 62:413–414. [PubMed] [Google Scholar]
  • Venter M., Myers T.G., Wilson M.A., Kindt T.J., Paweska J.T., Burt F.J., et al., Gene expression in mice infected with West Nile virus strains of different neurovirulence, Virology (2005) 342:119–140. [CrossRef] [PubMed] [Google Scholar]
  • Wacher C., Muller M., Hofer M.J., Getts D.R., Zabaras R., Ousman S.S., et al., Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses, J. Virol. (2006) 81:860–871. [CrossRef] [PubMed] [Google Scholar]
  • Wang J.J., Liao C.L., Chiou Y.W., Chiou C.T., Huang Y.L., Chen L.K., Ultrastructure and localization of E proteins in cultured neuron cells infected with Japanese encephalitis virus, Virology (1997) 238:30–39. [CrossRef] [PubMed] [Google Scholar]
  • Wicker J., Whiteman M., Beasley D., Davis C., Zhang S., Schneider B., et al., A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice, Virology (2006) 349:245–253. [CrossRef] [PubMed] [Google Scholar]
  • Wilson J.R., de Sessions P.F., Leon M.A., Scholle F., West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction, J. Virol. (2008) 82:262–8271. [Google Scholar]
  • Wojnarowicz C., Olkowski A., Schwean-Lardner K., First Canadian outbreak of West Nile virus disease in farmed domestic ducks in Saskatchewan, Can. Vet. J. (2007) 48:1270–1271. [PubMed] [Google Scholar]
  • Work T., Hurlbut H., Taylor R., Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs, Am. J. Trop. Med. Hyg. (1955) 4:872–888. [PubMed] [Google Scholar]
  • Xiao S.Y., Guzman H., Zhang H., Travassos da Rosa A.P., Tesh R.B., West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis, Emerg. Infect. Dis. (2001) 7:714–721. [CrossRef] [PubMed] [Google Scholar]
  • Zeller H.G., Schuffenecker I., West Nile virus: an overview of its spread in Europe and the Mediterranean Basin in contrast to its spread in the Americas, Eur. J. Clin. Microbiol. Infect. Dis. (2004) 23:147–156. [CrossRef] [PubMed] [Google Scholar]