Open Access
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 12
Published online 09 July 2010
How to cite this article Vet. Res. (2010) 41:68
  • Alverdy J., Holbrook C., Rocha F., Seiden L., Wu R.L., Musch M., et al., Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa, Ann. Surg. (2000) 232:480–489. [CrossRef] [PubMed] [Google Scholar]
  • Anonymous, Zoonoses Report, United Kingdom 2008, Department for Environment, Food and Rural Affairs Publications, London, 2010. [Google Scholar]
  • Bailey M.T., Dowd S.E., Parry N.M., Galley J.D., Schauer D.B., Lyte M., Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium, Infect. Immun. (2010) 78:1509–1519. [CrossRef] [PubMed] [Google Scholar]
  • Barthel M., Hapfelmeier S., Quintanilla-Martínez L., Kremer M., Rohde M., Hogardt M., et al., Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host, Infect. Immun. (2003) 71:2839–2858. [CrossRef] [PubMed] [Google Scholar]
  • Bearson B.L., Bearson S.M., The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium, Microb. Pathog. (2008) 44:271–278. [CrossRef] [PubMed] [Google Scholar]
  • Bearson B.L., Bearson S.M., Lee I.S., Brunelle B.W., The Salmonella enterica serovar Typhimurium QseB response regulator negatively regulates bacterial motility and swine colonization in the absence of the QseC sensor kinase, Microb. Pathog. (2010) 48:214–219. [CrossRef] [PubMed] [Google Scholar]
  • Berends B.R., Urlings H.A., Snijders J.M., Van Knapen F., Identification and quantification of risk factors in animal management and transport regarding Salmonella spp. in pigs, Int. J. Food Microbiol. (1996) 30:37–53. [CrossRef] [PubMed] [Google Scholar]
  • Callaway T.R., Morrow J.L., Edrington T.S., Genovese K.J., Dowd S., Carroll J., et al., Social stress increases fecal shedding of Salmonella typhimurium by early weaned piglets, Curr. Issues Intest. Microbiol. (2006) 7:65–71. [PubMed] [Google Scholar]
  • Clarke M.B., Hughes D.T., Zhu C., Boedeker E.C., Sperandio V., The QseC sensor kinase: a bacterial adrenergic receptor, Proc. Natl. Acad. Sci. USA (2006) 103:10420–10425. [CrossRef] [Google Scholar]
  • Davies R.H., Dalziel R., Gibbens J.C., Wilesmith J.W., Ryan J.M., Evans S.J., et al., National survey for Salmonella in pigs, cattle and sheep at slaughter in Great Britain, (1999–2000), J. Appl. Microbiol. (2004) 96:750–760. [CrossRef] [PubMed] [Google Scholar]
  • de Champlain J., Degeneration and regrowth of adrenergic nerve fibers in the rat peripheral tissues after 6-hydroxydopamine, Can. J. Physiol. Pharmacol. (1971) 4:345–355. [Google Scholar]
  • Dowd S.E., Callaway T.R., Morrow-Tesch J., Handling may cause increased shedding of Escherichia coli and total coliforms in pigs, Foodborne Pathog. Dis. (2007) 4:99–102. [CrossRef] [PubMed] [Google Scholar]
  • Ellermeier J.R., Slauch J.M., Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD, J. Bacteriol. (2008) 190:476–486. [CrossRef] [PubMed] [Google Scholar]
  • Foster N., Lovell M.A., Marston K.L., Hulme S.D., Frost A.J., Bland P., Barrow P.A., Rapid protection of gnotobiotic pigs against experimental salmonellosis following induction of polymorphonuclear leukocytes by avirulent Salmonella enterica, Infect. Immun. (2003) 71:2182–2191. [CrossRef] [PubMed] [Google Scholar]
  • Freestone P.P., Haigh R.D., Lyte M., Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica, FEMS Microbiol. Lett. (2007) 269:221–228. [CrossRef] [PubMed] [Google Scholar]
  • Freestone P.P., Lyte M., Microbial endocrinology: experimental design issues in the study of interkingdom signalling in infectious disease, Adv. Appl. Microbiol. (2008) 64:75–105. [CrossRef] [PubMed] [Google Scholar]
  • Freestone P.P., Sandrini S.M., Haigh R.D., Lyte M., Microbial endocrinology: how stress influences susceptibility to infection, Trends Microbiol. (2008) 16:55–64. [CrossRef] [PubMed] [Google Scholar]
  • Garner C.D., Antonopoulos D.A., Wagner B., Duhamel G.E., Keresztes I., Ross D.A., et al., Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar Typhimurium murine model of infection, Infect. Immun. (2009) 77:2691–2702. [CrossRef] [PubMed] [Google Scholar]
  • Hoiseth S.K., Stocker B.A., Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines, Nature (1981) 291:238–239. [CrossRef] [PubMed] [Google Scholar]
  • Hurd H.S., McKean J.D., Griffith R.W., Wesley I.V., Rostagno M.H., Salmonella enterica infections in market swine with and without transport and holding, Appl. Environ. Microbiol. (2002) 68:2376–2381. [CrossRef] [PubMed] [Google Scholar]
  • Isaacson R.E., Firkins L.D., Weigel R.M., Zuckermann F.A., DiPietro J.A., Effect of transportation and feed withdrawal on shedding of Salmonella typhimurium among experimentally infected pigs, Am. J. Vet. Res. (1999) 60:1155–1158. [PubMed] [Google Scholar]
  • Jones P.H., Roe J.M., Miller B.G., Effects of stressors on immune parameters and on the faecal shedding of enterotoxigenic Escherichia coli in piglets following experimental inoculation, Res. Vet. Sci. (2001) 70:9–17. [CrossRef] [PubMed] [Google Scholar]
  • Karavolos M.H., Spencer H., Bulmer D.M., Thompson A., Winzer K., Williams P., et al., Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses, BMC Genomics (2008) 9:458. [CrossRef] [PubMed] [Google Scholar]
  • Laughlin R.S., Musch M.W., Hollbrook C.J., Rocha F.M., Chang E.B., Alverdy J.C., The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis, Ann. Surg. (2000) 232:133–142. [CrossRef] [PubMed] [Google Scholar]
  • Lyte M., Bailey M.T., Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma, J. Surg. Res. (1997) 70:195–201. [CrossRef] [PubMed] [Google Scholar]
  • McCuddin Z.P., Carlson S.A., Sharma V.K., Experimental reproduction of bovine Salmonella encephalopathy using a norepinephrine-based stress model, Vet. J. (2008) 175:82–88. [CrossRef] [PubMed] [Google Scholar]
  • Methner U., Rabsch W., Reissbrodt R., Williams P.H., Effect of norepinephrine on colonisation and systemic spread of Salmonella enterica in infected animals: role of catecholate siderophore precursors and degradation products, Int. J. Med. Microbiol. (2008) 298:429–439. [CrossRef] [PubMed] [Google Scholar]
  • Moreira C.G., Weinshenker D., Sperandio V., QseC mediates Salmonella enterica serovar Typhimurium virulence in vitro and in vivo, Infect. Immun. (2010) 78:914–926. [CrossRef] [PubMed] [Google Scholar]
  • Morgan I.R., Krautil F.L., Craven J.A., Effect of time in lairage on caecal and carcass Salmonella contamination of slaughter pigs, Epidemiol. Infect. (1987) 98:323–330. [CrossRef] [PubMed] [Google Scholar]
  • Paulin S.M., Jagannathan A., Campbell J., Wallis T.S., Stevens M.P., Net replication of Salmonella enterica serovars Typhimurium and Choleraesuis in porcine intestinal mucosa and nodes is associated with their differential virulence, Infect. Immun. (2007) 75:3950–3960. [CrossRef] [PubMed] [Google Scholar]
  • Pullinger G.D., Carnell S.C., Sharaff F.F., van Diemen P.M., Dziva F., Morgan E., et al., Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE, Infect. Immun. (2010) 78:372–380. [CrossRef] [PubMed] [Google Scholar]
  • Rasko D.A., Moreira C.G., Li de R., Reading N.C., Ritchie J.M., Waldor M.K., et al., Targeting QseC signaling and virulence for antibiotic development, Science (2008) 321:1078–1080. [CrossRef] [PubMed] [Google Scholar]
  • Rasko D.A., Sperandio V., Anti-virulence strategies to combat bacteria-mediated disease, Nat. Rev. Drug Discov. (2010) 9:117–128. [CrossRef] [PubMed] [Google Scholar]
  • Reading N.C., Rasko D.A., Torres A.G., Sperandio V., The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis, Proc. Natl. Acad. Sci. USA (2009) 106:5889–5894. [CrossRef] [Google Scholar]
  • Reissbrodt R., Rienaecker I., Romanova J.M., Freestone P.P., Haigh R.D., Lyte M., et al., Resuscitation of Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer, Appl. Environ. Microbiol. (2002) 68:4788–4794. [CrossRef] [PubMed] [Google Scholar]
  • Sandrini S.M., Shergill R., Woodward J., Muralikuttan R., Haigh R.D., Lyte M., Freestone P.P., Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin, J. Bacteriol. (2010) 192:587–594. [CrossRef] [PubMed] [Google Scholar]
  • Sekirov I., Tam N.M., Jogova M., Robertson M.L., Li Y., Lupp C., Finlay B.B., Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection, Infect. Immun. (2008) 76:4726–4736. [CrossRef] [PubMed] [Google Scholar]
  • Spencer H., Karavolos M.H., Bulmer D.M., Aldridge P., Chhabra S.R., Winzer K., et al., Genome-wide transposon mutagenesis identifies a role for host neuroendocrine stress hormones in regulating the expression of virulence genes in Salmonella, J. Bacteriol. (2010) 192:714–724. [CrossRef] [PubMed] [Google Scholar]
  • Stabel T.J., Evaluation of 2-deoxy-D-glucose for induction of a stress response in pigs, Am. J. Vet. Res. (1999) 60:708–713. [PubMed] [Google Scholar]
  • Stabel T.J., Fedorka-Cray P.J., Effect of 2-deoxy-D-glucose induced stress on Salmonella choleraesuis shedding and persistence in swine, Res. Vet. Sci. (2004) 76:187–194. [CrossRef] [PubMed] [Google Scholar]
  • Stevens M.P., Modulation of the interaction of enteric bacteria with intestinal mucosa by stress-related catecholamines, in: Lyte M., Freestone P. (Eds.), Microbial Endocrinology, Springer Press, London, 2010, pp. 111–134. [CrossRef] [Google Scholar]
  • Thomas G.D., O’Hagan K.P., Zambraski E.J., Effects of 6-hydroxydopamine in hypertensive adult miniature swine, Clin. Exp. Hypertens. A (1990) 12:647–661. [CrossRef] [PubMed] [Google Scholar]
  • Toscano M.J., Stabel T.J., Bearson S.M.D., Bearson B.L., Lay D.C., Cultivation of Salmonella enterica serovar Typhimurium in a norepinephrine-containing medium alters in vivo tissue prevalence in swine, J. Exp. Anim. Sci. (2007) 43:329–338. [CrossRef] [Google Scholar]
  • Vlisidou I., Lyte M., van Diemen P.M., Hawes P., Monaghan P., Wallis T.S., Stevens M.P., The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection, Infect. Immun. (2004) 72:5446–5451. [CrossRef] [PubMed] [Google Scholar]
  • Watson P.R., Paulin S.M., Jones P.W., Wallis T.S., Interaction of Salmonella serotypes with porcine macrophages in vitro does not correlate with virulence, Microbiology (2000) 146:1639–1649. [PubMed] [Google Scholar]
  • Williams P.H., Rabsch W., Methner U., Voigt W., Tschäpe H., Reissbrodt R., Catecholate receptor proteins in Salmonella enterica: role in virulence and implications for vaccine development, Vaccine (2006) 24:3840–3844. [CrossRef] [PubMed] [Google Scholar]