Free Access
Vet. Res.
Volume 41, Number 4, July–August 2010
Number of page(s) 12
Published online 22 February 2010
How to cite this article Vet. Res. (2010) 41:40
  • Affolter V.K., Moore P.F., Canine cutaneous and systemic histiocytosis: reactive histiocytosis of dermal dendritic cells, Am. J. Dermatopathol. (2000) 22:40–48. [CrossRef] [PubMed] [Google Scholar]
  • Auffray C., Sieweke M.H., Geissmann F., Blood monocytes: development, heterogeneity, and relationship with dendritic cells, Annu. Rev. Immunol. (2009) 27:669–692. [CrossRef] [PubMed] [Google Scholar]
  • Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y.J., , Immunobiology of dendritic cells, Annu. Rev. Immunol. (2000) 18:767–811. [CrossRef] [PubMed] [Google Scholar]
  • Barratt-Boyes S.M., Henderson R.A., Finn O.J., Chimpanzee dendritic cells with potent immunostimulatory function can be propagated from peripheral blood, Immunology (1996) 87:528–534. [CrossRef] [PubMed] [Google Scholar]
  • Bice D.E., Seagrave J., Green F.H., Animal models of asthma: potential usefulness for studying health effects of inhaled particles, Inhal. Toxicol. (2000) 12:829–862. [CrossRef] [PubMed] [Google Scholar]
  • Bienzle D., Reggeti F., Clark M.E., Chow C., Immunophenotype and functional properties of feline dendritic cells derived from blood and bone marrow, Vet. Immunol. Immunopathol. (2003) 96:19–30. [CrossRef] [PubMed] [Google Scholar]
  • Bonnefont-Rebeix C., de Carvalho C.M., Bernaud J., Chabanne L., Marchal T., Rigal D., CD86 molecule is a specific marker for canine monocyte-derived dendritic cells, Vet. Immunol. Immunopathol. (2006) 109:167–176. [CrossRef] [PubMed] [Google Scholar]
  • Carrasco C.P., Rigden R.C., Schaffner R., Gerber H., Neuhaus V., Inumaru S., , Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties, Immunology (2001) 104:175–184. [CrossRef] [PubMed] [Google Scholar]
  • Catchpole B., Stell A.J., Dobson J.M., Generation of blood-derived dendritic cells in dogs with oral malignant melanoma, J. Comp. Pathol. (2002) 126:238–241. [CrossRef] [PubMed] [Google Scholar]
  • Cavatorta D.J., Erb H.N., Flaminio M.J., Ex vivo generation of mature equine monocyte-derived dendritic cells, Vet. Immunol. Immunopathol. (2009) 131:259–267. [CrossRef] [PubMed] [Google Scholar]
  • Day M.J., Antigen specificity in canine autoimmune haemolytic anaemia, Vet. Immunol. Immunopathol. (1999) 69:215–224. [CrossRef] [PubMed] [Google Scholar]
  • Garg R., Dube A., Animal models for vaccine studies for visceral leishmaniasis, Indian J. Med. Res. (2006) 123:439–454. [PubMed] [Google Scholar]
  • Happ G.M., Thyroiditis – a model canine autoimmune disease, Adv. Vet. Sci. Comp. Med. (1995) 39:97–139. [CrossRef] [PubMed] [Google Scholar]
  • Heath W.R., Carbone F.R., Dendritic cell subsets in primary and secondary T cell responses at body surfaces, Nat. Immunol. (2009) 10:1237–1244. [CrossRef] [PubMed] [Google Scholar]
  • Hope J.C., Werling D., Collins R.A., Mertens B., Howard C.J., Flt-3 ligand, in combination with bovine granulocyte-macrophage colony-stimulating factor and interleukin-4, promotes the growth of bovine bone marrow derived dendritic cells, Scand. J. Immunol. (2000) 51:60–66. [CrossRef] [PubMed] [Google Scholar]
  • Howard C.J., Brooke G.P., Werling D., Sopp P., Hope J.C., Parsons K.R., Collins R.A., Dendritic cells in cattle: phenotype and function, Vet. Immunol. Immunopathol. (1999) 72:119–124. [CrossRef] [PubMed] [Google Scholar]
  • Ibisch C., Pradal G., Bach J.M., Lieubeau B., Functional canine dendritic cells can be generated in vitro from peripheral blood mononuclear cells and contain a cytoplasmic ultrastructural marker, J. Immunol. Methods (2005) 298:175–182. [CrossRef] [PubMed] [Google Scholar]
  • Im Hof M., Williamson L., Summerfield A., Balmer V., Dutoit V., Kandimalla E.R., , Effect of synthetic agonists of toll-like receptor 9 on canine lymphocyte proliferation and cytokine production in vitro, Vet. Immunol. Immunopathol. (2008) 124:120–131. [CrossRef] [PubMed] [Google Scholar]
  • Kumar H., Kawai T., Akira S., Toll-like receptors and innate immunity, Biochem. Biophys. Res. Commun. (2009) 388:621–625. [CrossRef] [PubMed] [Google Scholar]
  • Liu Y.J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity, Cell (2001) 106:259–262. [CrossRef] [PubMed] [Google Scholar]
  • Looringh van Beeck F.A., Zajonc D.M., Moore P.F., Schlotter Y.M., Broere F., Rutten V.P., , Two canine CD1a proteins are differentially expressed in skin, Immunogenetics (2008) 60:315–324. [CrossRef] [PubMed] [Google Scholar]
  • Lutz M.B., Kukutsch N., Ogilvie A.L., Rossner S., Koch F., Romani N., Schuler G., An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, J. Immunol. Methods (1999) 223:77–92. [CrossRef] [PubMed] [Google Scholar]
  • Merad M., Manz M.G., Dendritic cell homeostasis, Blood (2009) 113:3418–3427. [CrossRef] [PubMed] [Google Scholar]
  • Mielcarek M., Kucera K.A., Nash R., Torok-Storb B., McKenna H.J., Identification and characterization of canine dendritic cells generated in vivo, Biol. Blood Marrow Transplant. (2007) 13:1286–1293. [CrossRef] [PubMed] [Google Scholar]
  • Nestle F.O., Di Meglio P., Qin J.Z., Nickoloff B.J., Skin immune sentinels in health and disease, Nat. Rev. Immunol. (2009) 9:679–691. [CrossRef] [PubMed] [Google Scholar]
  • Onai N., Obata-Onai A., Schmid M.A., Ohteki T., Jarrossay D., Manz M.G., Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow, Nat. Immunol. (2007) 8:1207–1216. [CrossRef] [PubMed] [Google Scholar]
  • Reis e Sousa C., Toll-like receptors and dendritic cells: for whom the bug tolls, Semin. Immunol. (2004) 16:27–34. [CrossRef] [PubMed] [Google Scholar]
  • Rescigno M., Di Sabatino A., Dendritic cells in intestinal homeostasis and disease, J. Clin. Invest. (2009) 119:2441–2450. [CrossRef] [PubMed] [Google Scholar]
  • Siena S., Di Nicola M., Bregni M., Mortarini R., Anichini A., Lombardi L., , Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy, Exp. Hematol. (1995) 23:1463–1471. [PubMed] [Google Scholar]
  • Sinke J.D., Rutten V.P., Willemse T., Immune dysregulation in atopic dermatitis, Vet. Immunol. Immunopathol. (2002) 87:351–356. [CrossRef] [PubMed] [Google Scholar]
  • Soon-Shiong P., Feldman E., Nelson R., Heintz R., Merideth N., Sandford P., , Long-term reversal of diabetes in the large animal model by encapsulated islet transplantation, Transplant. Proc. (1992) 24:2946–2947. [PubMed] [Google Scholar]
  • Steinman R.M., Inaba K., Turley S., Pierre P., Mellman I., Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies, Hum. Immunol. (1999) 60:562–567. [CrossRef] [PubMed] [Google Scholar]
  • Summerfield A., Guzylack-Piriou L., Schaub A., Carrasco C.P., Tache V., Charley B., McCullough K.C., Porcine peripheral blood dendritic cells and natural interferon-producing cells, Immunology (2003) 110:440–449. [CrossRef] [PubMed] [Google Scholar]
  • Summerfield A., McCullough K.C., The porcine dendritic cell family, Dev. Comp. Immunol. (2009) 33:299–309. [CrossRef] [PubMed] [Google Scholar]
  • Talmor M., Mirza A., Turley S., Mellman I., Hoffman L.A., Steinman R.M., Generation or large numbers of immature and mature dendritic cells from rat bone marrow cultures, Eur. J. Immunol. (1998) 28:811–817. [CrossRef] [PubMed] [Google Scholar]
  • Van Kooyk Y., C-type lectins on dendritic cells: key modulators for the induction of immune responses, Biochem. Soc. Trans. (2008) 36:1478–1481. [CrossRef] [PubMed] [Google Scholar]
  • Varol C., Yona S., Jung S., Origins and tissue-context-dependent fates of blood monocytes, Immunol. Cell Biol. (2009) 87:30–38. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y.S., Chi K.H., Chu R.M., Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide- or tumor necrosis factor-alpha-induced maturation, Vet. Immunol. Immunopathol. (2007) 118:186–198. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y.S., Chi K.H., Liao K.W., Liu C.C., Cheng C.L., Lin Y.C., , Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation, Can. J. Vet. Res. (2007) 71:165–174. [PubMed] [Google Scholar]
  • Weber M., Lange C., Gunther W., Franz M., Kremmer E., Kolb H.J., Minor histocompatibility antigens on canine hemopoietic progenitor cells, J. Immunol. (2003) 170:5861–5868. [PubMed] [Google Scholar]
  • Wollenberg A., Mommaas M., Oppel T., Schottdorf E.M., Gunther S., Moderer M., Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases, J. Invest. Dermatol. (2002) 118:327–334. [Google Scholar]
  • Yao V., Platell C., Hall J.C., Dendritic cells, ANZ J. Surg. (2002) 72:501–506. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida H., Momoi Y., Taga N., Ide K., Yamazoe K., Iwasaki T., Kudo T., Generation of canine dendritic cells from peripheral blood mononuclear cells, J. Vet. Med. Sci. (2003) 65:663–669. [CrossRef] [PubMed] [Google Scholar]
  • Ytterberg S.R., Animal models of myopathy, Curr. Opin. Rheumatol. (1991) 3:934–940. [CrossRef] [PubMed] [Google Scholar]