Open Access
Vet. Res.
Volume 41, Number 3, May–June 2010
Number of page(s) 15
Published online 13 January 2010
How to cite this article Vet. Res. (2010) 41:29
  • Apodaca G., Endocytic traffic in polarized epithelial cells: role of actin and microtubule cytoskeleton, Traffic (2001) 2:149–159. [CrossRef] [PubMed] [Google Scholar]
  • Arnheiter H., Haller O., Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins, EMBO J. (1988) 7:1315–1320. [PubMed] [Google Scholar]
  • Baise E., Pire G., Leroy M., Gérardin J., Goris N., De Clercq K., , Conditional expression of type I interferon-induced bovine Mx1 GTPase in a stable transgenic vero cell line interferes with replication of vesicular stomatitis virus, J. Interferon Cytokine Res. (2004) 24:513–521. [PubMed] [Google Scholar]
  • Barret T., Wolstenholme A.J., Maby B.W.J., Transcription and replication of influenza virus RNA, Virology (1979) 98:211–225. [CrossRef] [PubMed] [Google Scholar]
  • Bucci C., Parton R.G., Mather I.H., Stunnenberg H., Simons K., Hoflacks B., Zerial M., The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway, Cell (1992) 70:715–728. [CrossRef] [PubMed] [Google Scholar]
  • Christoforidis S., McBride H.M., Burgoyne R.D., Zerial M., The Rab5 effector EEA1 is a core component of endosome docking, Nature (1999) 397:621–625. [CrossRef] [PubMed] [Google Scholar]
  • D’Arrigo A., Bucci C., Toh B.H., Stenmark H., Microtubules are involved in bafilomycin A1-induced tubulation and Rab5-dependent vacuolation of early endosomes, Eur. J. Cell Biol. (1997) 72:95–103. [PubMed] [Google Scholar]
  • Ehrhardt C., Marjuki H., Wolff T., Nürnberg B., Planz O., Pleschka S., Ludwig G.S., Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence, Cell. Microbiol. (2006) 8:1336–1348. [CrossRef] [PubMed] [Google Scholar]
  • Emeny J.M., Morgan M.J., Regulation of the interferon system: evidence that Vero cells have genetic defect in interferon production, J. Gen. Virol. (1979) 43:247–252. [CrossRef] [PubMed] [Google Scholar]
  • Goldstein J.L., Brown M.S., Anderson R.G.W., Russel D.W., Schneider W.J., Receptor-mediated endocytosis: concepts emerging from LDL receptor system, Annu. Rev. Cell Biol. (1985) 1:1–39. [CrossRef] [PubMed] [Google Scholar]
  • Gruenberg J., The endocytic pathway: a mosaic of domains, Nat. Rev. Mol. Cell Biol. (2001) 2:721–730. [Google Scholar]
  • Huang T., Pavlovic J., Staeheli P., Krystal M., Overexpression of the influenza virus polymerase can titrate out inhibition by the murine Mx1 protein, J. Virol. (1992) 66:4154–4160. [PubMed] [Google Scholar]
  • Kjeken R., Mousavi S.A., Brech A., Griffiths G., Berg T., Wortmannin-sensitive trafficking steps in the endocytic pathway in rat liver endothelial cell, Biochem. J. (2001) 357:497–503. [CrossRef] [PubMed] [Google Scholar]
  • Klasse P.J., Bron R., Marsh M., Mechanisms of enveloped virus entry into animal cells, Adv. Drug Deliv. Rev. (1998) 34:65–91. [CrossRef] [PubMed] [Google Scholar]
  • Lindenmann J., Resistance of mice to mouse-adapted influenza A virus, Virology (1962) 16:203–204. [CrossRef] [PubMed] [Google Scholar]
  • Lindenmann J., Inheritance of resistance to influenza virus in mice, Proc. Soc. Exp. Biol. Med. (1964) 116:506–509. [PubMed] [Google Scholar]
  • Martin K., Helenius A., Transport of incoming influenza virus nucleocapsids into the nucleus, J. Virol. (1990) 65:232–244. [Google Scholar]
  • Matlin K.S., Reggio H., Helenius A., Simons K., Infectious entry pathway of influenza virus in canine kidney cell line, J. Cell Biol. (1998) 91:601–613. [CrossRef] [Google Scholar]
  • Maxfield F.R., McGraw T.E., Endocytic recycling, Nat. Rev. Mol. Cell Biol. (2004) 5:121–132. [CrossRef] [PubMed] [Google Scholar]
  • Müller M., Winnacker E.L., Brem G., Molecular cloning of porcine Mx cDNAs: new members of a family of interferon-inducible proteins with homology to GTP-binding proteins, J. Interferon Res. (1992) 12:119–129. [PubMed] [Google Scholar]
  • Mushinski J.F., Nguyen P., Stevens L.M., Khanna C., Lee S., Chung E.J., , Inhibition of tumor cell motility by the interferon-inducible GTPase MxA, J. Biol. Chem. (2009) 284:15206–15214. [CrossRef] [PubMed] [Google Scholar]
  • Nakajima E., Morozumi T., Tsukamoto K., Watanabe T., Plastow G., Mitsuhashi T., A naturally occurring variant of porcine Mx1 associated with increased susceptibility to influenza virus in vitro, Biochem. Genet. (2007) 45:11–24. [CrossRef] [PubMed] [Google Scholar]
  • Nielsen E., Severin F., Backer J.M., Hyman A.A., Zerial M., Rab5 regulates motility of early endosomes on microtubules, Nat. Cell Biol. (1999) 1:376–382. [CrossRef] [PubMed] [Google Scholar]
  • Palm M., Leroy M., Thomas A., Linden A., Desmecht D., Differential anti-influenza activity among allelic variants at the Sus scrofa Mx1 locus, J. Interferon Cytokine Res. (2007) 27:147–155. [CrossRef] [PubMed] [Google Scholar]
  • Patki V., Virbasisus J., Lane W.S., Toh B.H., Shpetner H.S., Corvera S., Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. USA (1997) 94:7326–7330. [CrossRef] [Google Scholar]
  • Pavlovic J., Zürcher T., Haller O., Staeheli P., Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein, J. Virol. (1990) 64:3370–3375. [PubMed] [Google Scholar]
  • Pavlovic J., Haller O., Staeheli P., Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle, J. Virol. (1992) 66:2564–2569. [PubMed] [Google Scholar]
  • Pfeffer S.R., Membrane traffic. Motivating endosome motility, Nat. Cell Biol. (1999) 1:E145–E147. [CrossRef] [PubMed] [Google Scholar]
  • Reeves R.H., O’Hara B.F., Pavan W.J., Gearhart J.D., Haller O., Genetic mapping of the Mx influenza virus resistance gene within the region of mouse chromosome 16 that is homologous to human chromosome 21, J. Virol. (1988) 62:4372–4375. [PubMed] [Google Scholar]
  • Rubino M., Miaczynska M., Lippe R., Zerial M., Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes, J. Biol. Chem. (2000) 275:3745–3748. [CrossRef] [PubMed] [Google Scholar]
  • Rust M.J., Lakadamyali M., Zhang F., Zhuang X., Assembly of endocytic machinery around individual influenza viruses during viral entry, Nat. Struct. Mol. Biol. (2004) 11:567–573. [CrossRef] [PubMed] [Google Scholar]
  • Shashidhar S.J., Mittal R., Expression of the antiviral protein MXA in cells transiently perturbs endocytosis, Biochem. Biophys. Res. Commun. (2004) 323:541–545. [CrossRef] [PubMed] [Google Scholar]
  • Sieczkarski S.B., Whittaker G.R., Differential requirements of Rab5 and Rab7 for endocytosis of influenza and other enveloped viruses, Traffic (2003) 4:333–343. [CrossRef] [PubMed] [Google Scholar]
  • Sieczkarski S.B., Brown H.A., Whittaker G.R., Role of protein kinase C beta II in influenza virus entry via late endosomes, J. Virol. (2003) 77:460–469. [CrossRef] [PubMed] [Google Scholar]
  • Simonsen A., Lippe R., Christoforidis S., Gaullier J.M., Brech A., Callaghan J., , EEA1 links PI(3)K function to Rab5 regulation of endosome fusion, Nature (1998) 394:494–498. [CrossRef] [PubMed] [Google Scholar]
  • Staeheli P., Haller O., Boil W., Lindenmann J., Weissmann C., Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus, Cell (1986) 44:147–158. [CrossRef] [PubMed] [Google Scholar]
  • Staeheli P., Grob R., Meier E., Sutcliffe J.G., Haller O., Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation, Mol. Cell. Biol. (1988) 8:4518–4523. [PubMed] [Google Scholar]
  • Stegmann T., White J.M., Helenius A., Intermediates in influenza induced membrane fusion, EMBO J. (1990) 9:4231–4241. [PubMed] [Google Scholar]
  • Stenmark K., Aasland R., Toh B.H., D’Arrigo A., Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger, J. Biol. Chem. (1996) 271:24048–24054. [CrossRef] [PubMed] [Google Scholar]
  • Stranden A.M., Staeheli P., Pavlovic J., Function of the mouse Mx1 protein is inhibited by overexpression of the PB2 protein of influenza virus, Virology (1993) 197:642–651. [CrossRef] [PubMed] [Google Scholar]
  • Taylor J.M., Illmensee R., Litwin S., Herring B., Broni B., Krug R.M., Use of specific radioactive probes to study transcription and replication of the influenza virus genome, J. Virol. (1977) 21:530–540. [PubMed] [Google Scholar]
  • Vonderheit A., Helenius A., Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes, PLoS Biol. (2005) 3:e233. [CrossRef] [PubMed] [Google Scholar]
  • Vreede F., Jung T., Brownlee G., Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates, J. Virol. (2004) 78:9568–9572. [CrossRef] [PubMed] [Google Scholar]
  • Zürcher T., Pavlovic J., Staeheli P., Mechanism of human MxA protein action: variants with changed antiviral properties, EMBO J. (1992) 11:1657–1661. [PubMed] [Google Scholar]