Open Access
Review
Issue
Vet. Res.
Volume 41, Number 3, May–June 2010
Number of page(s) 10
DOI https://doi.org/10.1051/vetres/2009075
Published online 10 December 2009
How to cite this article Vet. Res. (2010) 41:27
  • Anderson I.E., Baxter T.A., Chlamydia psittaci: inclusion morphology in cell culture and virulence in mice of ovine isolates, Vet. Rec. (1986) 119:453–454. [CrossRef] [PubMed] [Google Scholar]
  • Anderson I.E., Baxter S.I., Dunbar S., Rae A.G., Philips H.L., Clarkson M.J., Herring A.J., Analyses of the genomes of Chlamydial isolates from ruminants and pigs support the adoption of the new species Chlamydia pecorum , Int. J. Syst. Bacteriol. (1996) 46:245–251. [CrossRef] [PubMed] [Google Scholar]
  • Bavoil P.M., Hsia R., Ojcius D.M., Closing in on Chlamydia and its intracellular bag of tricks, Microbiology (2000) 146:2723–2731. [PubMed] [Google Scholar]
  • Buendia A.J., Sanchez J., Del Rio L., Garces B., Gallego M.C., Caro M.R., , Differences in the immune response against ruminant Chlamydial strains in a murine model, Vet. Res. (1999) 30:495–507. [PubMed] [Google Scholar]
  • Bush R.M., Everett K.D., Molecular evolution of the Chlamydiaceae, Int. J. Syst. Evol. Microbiol. (2001) 51:203–220. [PubMed] [Google Scholar]
  • Camenisch U., Lu Z.H., Vaughan L., Corboz L., Zimmermann D.R., Wittenbrink M.M., et al., Diagnostic investigation into the role of Chlamydiae in cases of increased rates of return to oestrus in pigs, Vet. Rec. (2004) 155:593–596. [CrossRef] [PubMed] [Google Scholar]
  • Carlson J.H., Whitmire W.M., Crane D.D., Wicke L., Virtaneva K., Sturdevant D.E., et al., The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor, Infect. Immun. (2008) 76:2273–2283. [CrossRef] [PubMed] [Google Scholar]
  • Clarkson M.J., Philips H.L., Isolation of faecal Chlamydia from sheep in Britain and their characterization by cultural properties, Vet. J. (1997) 153:307–310. [CrossRef] [PubMed] [Google Scholar]
  • Cockram F.A., Jackson A.R., Isolation of a Chlamydia from cases of keratoconjunctivitis in koalas, Aust. Vet. J. (1974) 50:82–83. [CrossRef] [PubMed] [Google Scholar]
  • Comanducci M., Ricci S., Ratti G., The structure of a plasmid of Chlamydia trachomatis believed to be required for growth within mammalian cells, Mol. Microbiol. (1988) 2:531–538. [CrossRef] [PubMed] [Google Scholar]
  • DeGraves F.J., Gao D., Hehnen H.R., Schlapp T., Kaltenboeck B., Quantitative detection of Chlamydia psittaci and C. pecorum by high-sensitivity real-time PCR reveals high prevalence of vaginal infection in cattle, J. Clin. Microbiol. (2003) 41:1726–1729. [CrossRef] [PubMed] [Google Scholar]
  • Denamur E., Sayada C., Souriau A., Orfila J., Rodolakis A., Elion J., Restriction pattern of the major outer-membrane protein gene provides evidence for a homogeneous invasive group among ruminant isolates of Chlamydia psittaci, J. Gen. Microbiol. (1991) 137:2525–2530. [PubMed] [Google Scholar]
  • Doughri A.M., Yong S., Storz J., Pathologic changes in intestinal Chlamydial infection of newborn calves, Am. J. Vet. Res. (1974) 35:939–944. [PubMed] [Google Scholar]
  • Eb F., Orfila J., Serotyping of Chlamydia psittaci by the micro-immunofluorescence test: isolates of ovine origin, Infect. Immun. (1982) 37:1289–1291. [PubMed] [Google Scholar]
  • Everett K.D., Andersen A.A., The ribosomal intergenic spacer and domain I of the 23S rRNA gene are phylogenetic markers for Chlamydia spp., Int. J. Syst. Bacteriol. (1997) 47:461–473. [CrossRef] [PubMed] [Google Scholar]
  • Everett K.D., Bush R.M., Andersen A.A., Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms, Int. J. Syst. Bacteriol. (1999) 49:415–440. [CrossRef] [PubMed] [Google Scholar]
  • Everson J.S., Garner S.A., Lambden P.R., Fane B.A., Clarke I.N., Host range of Chlamydiaphages phiCPAR39 and Chp3, J. Bacteriol. (2003) 185:6490–6492. [CrossRef] [PubMed] [Google Scholar]
  • Fukushi H., Hirai K., Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin, J. Bacteriol. (1989) 171:2850–2855. [PubMed] [Google Scholar]
  • Fukushi H., Hirai K., Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants, Int. J. Syst. Bacteriol. (1992) 42:306–308. [CrossRef] [PubMed] [Google Scholar]
  • Fukushi H., Hirai K., Chlamydia pecorum – the fourth species of genus Chlamydia, Microbiol. Immunol. (1993) 37:516–522. [PubMed] [Google Scholar]
  • Garner S.A., Everson J.S., Lambden P.R., Fane B.A., Clarke I.N., Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum, Virus Genes (2004) 28:207–214. [CrossRef] [PubMed] [Google Scholar]
  • Girjes A.A., Hugall A.F., Timms P., Lavin M.F., Two distinct forms of Chlamydia psittaci associated with disease and infertility in Phascolarctos cinereus (koala), Infect. Immun. (1988) 56:1897–1900. [PubMed] [Google Scholar]
  • Glassick T., Giffard P., Timms P., Outer membrane protein 2 gene sequences indicate that tow Chlamydial species, Chlamydia pecorum and Chlamydia pneumoniae, cause infections in koalas, Syst. Appl. Microbiol. (1996) 19:456–464. [Google Scholar]
  • Godin A.C., Bjorkman C., Englund S., Johansson K.E., Niskanen R., Alenius S., Investigation of Chlamydophila spp. in dairy cows with reproductive disorders, Acta Vet. Scand. (2008) 50:39. [CrossRef] [PubMed] [Google Scholar]
  • Gordon F.B., Quan A.L., Occurence of glycogen in inclusions of the psittacosis-lymphogranuloma venereum-trachoma agents, J. Infect. Dis. (1965) 115:186–196. [PubMed] [Google Scholar]
  • Grayston J.T., Wang S.P., Kuo C.C., Campbell L.A., Current knowledge on Chlamydia pneumoniae, strain TWAR, an important cause of pneumonia and other acute respiratory diseases, Eur. J. Clin. Microbiol. Infect. Dis. (1989) 8:191–202. [CrossRef] [PubMed] [Google Scholar]
  • Greco G., Corrente M., Buonavoglia D., Campanile G., Di Palo R., Martella V., , Epizootic abortion related to infections by Chlamydophila abortus and Chlamydophila pecorum in water buffalo (Bubalus bubalis), Theriogenology (2008) 69:1061–1069. [CrossRef] [PubMed] [Google Scholar]
  • Grimwood J., Stephens R.S., Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae, Microb. Comp. Genomics (1999) 4:187–201. [PubMed] [Google Scholar]
  • Hsia R., Ohayon H., Gounon P., Dautry-Varsat A., Bavoil P.M., Phage infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea pig inclusion conjunctivitis, Microbes Infect. (2000) 2:761–772. [CrossRef] [PubMed] [Google Scholar]
  • Hugall A., Timms P., Girjes A.A., Lavin M.F., Conserved DNA sequences in Chlamydial plasmids, Plasmid (1989) 22:91–98. [CrossRef] [PubMed] [Google Scholar]
  • Jackson M., Giffard P., Timms P., Outer membrane protein A gene sequencing demonstrates the polyphyletic nature of koala Chlamydia pecorum isolates, Syst. Appl. Microbiol. (1997) 20:187–200. [Google Scholar]
  • Jackson M., White N., Giffard P., Timms P., Epizootiology of Chlamydia infections in two free-range koala populations, Vet. Microbiol. (1999) 65:255–264. [CrossRef] [PubMed] [Google Scholar]
  • Jaeger J., Liebler-Tenorio E., Kirschvink N., Sachse K., Reinhold P., A clinically silent respiratory infection with Chlamydophila spp. in calves is associated with airway obstruction and pulmonary inflammation, Vet. Res. (2007) 38:711–728. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Jee J., Degraves F.J., Kim T., Kaltenboeck B., High prevalence of natural Chlamydophila species infection in calves, J. Clin. Microbiol. (2004) 42:5664–5672. [CrossRef] [PubMed] [Google Scholar]
  • Kaltenboeck B., Storz J., Biological properties and genetic analysis of the ompA locus in chlamydiae isolated from swine, Am. J. Vet. Res. (1992) 53:1482–1487. [PubMed] [Google Scholar]
  • Kaltenboeck B., Kousoulas K.G., Storz J., Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp., J. Clin. Microbiol. (1992) 30:1098–1104. [PubMed] [Google Scholar]
  • Kaltenboeck B., Kousoulas K.G., Storz J., Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four Chlamydial species, J. Bacteriol. (1993) 175:487–502. [PubMed] [Google Scholar]
  • Kaltenboeck B., Hehnen H.R., Vaglenov A., Bovine Chlamydophila spp. infection: do we underestimate the impact on fertility?, Vet. Res. Commun. (2005) 29:1–15. [CrossRef] [Google Scholar]
  • Kaltenboeck B., Heinen E., Schneider R., Wittenbrink M.M., Schmeer N., OmpA and antigenic diversity of bovine Chlamydophila pecorum strains, Vet. Microbiol. (2009) 135:175–180. [CrossRef] [PubMed] [Google Scholar]
  • Kauffold J., Melzer F., Henning K., Schulze K., Leiding C., Sachse K., Prevalence of Chlamydiae in boars and semen used for artificial insemination, Theriogenology (2006) 65:1750–1758. [CrossRef] [PubMed] [Google Scholar]
  • Kauffold J., Henning K., Bachmann R., Hotzel H., Melzer F., The prevalence of Chlamydiae of bulls from six bull studs in Germany, Anim. Reprod. Sci. (2007) 102:111–121. [CrossRef] [PubMed] [Google Scholar]
  • Laroucau K., Thierry S., Vorimore F., Blanco K., Kaleta E., Hoop R., , High resolution typing of Chlamydophila psittaci by multilocus VNTR analysis (MLVA), Infect. Genet. Evol. (2008) 8:171–181. [CrossRef] [PubMed] [Google Scholar]
  • Laroucau K., Vorimore F., Bertin C., Yousef Mohamad K., Thierry S., Hermann W., et al., Genotyping of Chlamydophila abortus strains by multilocus VNTR analysis, Vet. Microbiol. (2009) 137:335–344. [CrossRef] [PubMed] [Google Scholar]
  • Liu B.L., Everson J.S., Fane B., Giannikopoulou P., Vretou E., Lambden P.R., Clarke I.N., Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci, J. Virol. (2000) 74:3464–3469. [CrossRef] [PubMed] [Google Scholar]
  • Liu Z., Rank R., Kaltenboeck B., Magnino S., Dean D., Burall L., , Genomic plasticity of the rrn-nqrF intergenic segment in the Chlamydiaceae, J. Bacteriol. (2007) 189:2128–2132. [CrossRef] [PubMed] [Google Scholar]
  • Longbottom D., Chlamydial infections of domestic ruminants and swine: new nomenclature and new knowledge, Vet. J. (2004) 168:9–11. [CrossRef] [PubMed] [Google Scholar]
  • Lovett M., Kuo K.K., Holmes K., Falkow S., Plasmids of the genus Chlamydia , in: Nelson J., Grassi C. (Eds.), Current chemotherapy and infectious diseases, Vol. 2, American Society for Microbiology, Washington, DC, 1980, pp. 1250–1252. [Google Scholar]
  • Lusher M., Storey C.C., Richmond S.J., Plasmid diversity within the genus Chlamydia, J. Gen. Microbiol. (1989) 135:1145–1151. [PubMed] [Google Scholar]
  • McClenaghan M., Honeycombe J.R., Bevan B.J., Herring A.J., Distribution of plasmid sequences in avian and mammalian strains of Chlamydia psittaci, J. Gen. Microbiol. (1988) 134:559–565. [PubMed] [Google Scholar]
  • McColl K.A., Martin R.W., Gleeson L.J., Handasyde K.A., Lee A.K., Chlamydia infection and infertility in the female koala (Phascolarctos cinereus), Vet. Rec. (1984) 115–655. [PubMed] [Google Scholar]
  • McNutt S.H., Waller E.F., Sporadic bovine encephalomyelitis (Buss disease), Cornell Vet. (1940) 30:437–448. [Google Scholar]
  • Moulder J.W., Interaction of Chlamydiae and host cells in vitro, Microbiol. Rev. (1991) 55:143–190. [Google Scholar]
  • O’Connell C.M., Ingalls R.R., Andrews C.W. Jr, Scurlock A.M., Darville T., Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease, J. Immunol. (2007) 179:4027–4034. [PubMed] [Google Scholar]
  • Page L.A., Interspecies transfer of psittacosis-LGV-trachoma agents: pathogenicity of two avian and two mammalian strains for eight species of birds and mammals, Am. J. Vet. Res. (1966) 27:397–407. [PubMed] [Google Scholar]
  • Palmer L., Falkow S., A common plasmid of Chlamydia trachomatis, Plasmid (1986) 16:52–62. [CrossRef] [PubMed] [Google Scholar]
  • Pedersen L.N., Podenphant L., Moller J.K., Highly discriminative genotyping of Chlamydia trachomatis using omp1 and a set of variable number tandem repeats, Clin. Microbiol. Infect. (2008) 14:644–652. [CrossRef] [PubMed] [Google Scholar]
  • Philips H.L., Clarkson M.J., Culture of sheep Chlamydia in a sheep fibroblast cell culture, Res. Vet. Sci. (1992) 53:267–268. [PubMed] [Google Scholar]
  • Philips H.L., Clarkson M.J., Experimental infection of pregnant ewes with Chlamydia pecorum , Infect. Immun. (1998) 66:2818–2821. [PubMed] [Google Scholar]
  • Pickett M.A., Everson J.S., Pead P.J., Clarke I.N., The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents, Microbiology (2005) 151:893–903. [CrossRef] [PubMed] [Google Scholar]
  • Rank R.G., Bowlin A.K., Cane S., Shou H., Liu Z., Nagarajan U.M., Bavoil P.M., Effect of Chlamydiaphage phiCPG1 on the course of conjunctival infection with “Chlamydia caviae” in guinea pigs, Infect. Immun. (2009) 77:1216–1221. [CrossRef] [PubMed] [Google Scholar]
  • Read T.D., Fraser C.M., Hsia R.C., Bavoil P.M., Comparative analysis of Chlamydia bacteriophages reveals variation localized to a putative receptor binding domain, Microb. Comp. Genomics (2000) 5:223–231. [PubMed] [Google Scholar]
  • Reinhold P., Jaeger J., Liebler-Tenorio E., Berndt A., Bachmann R., Schubert E., , Impact of latent infections with Chlamydophila species in young cattle, Vet. J. (2008) 175:202–211. [CrossRef] [PubMed] [Google Scholar]
  • Rekiki A., Bouakane A., Hammami S., El Idrissi A.H., Bernard F., Rodolakis A., Efficacy of live Chlamydophila abortus vaccine 1B in protecting mice placentas and foetuses against strains of Chlamydophila pecorum isolated from cases of abortion, Vet. Microbiol. (2004) 99:295–299. [CrossRef] [PubMed] [Google Scholar]
  • Richmond S., Stirling P., Ashley C., Virus infecting the reticulate bodies of an avian strain of Chlamydia psittaci, FEMS Microbiol. Lett. (1982) 14:31–36. [CrossRef] [Google Scholar]
  • Rodolakis A., Bernard F., Lantier F., Mouse models for evaluation of virulence of Chlamydia psittaci isolated from ruminants, Res. Vet. Sci. (1989) 46:34–39. [PubMed] [Google Scholar]
  • Rodolakis A., Souriau A., Variations in the virulence of strains of Chlamydia psittaci for pregnant ewes, Vet. Rec. (1989) 125:87–90. [CrossRef] [PubMed] [Google Scholar]
  • Rodolakis A., Souriau A., Restriction endonuclease analysis of DNA from ruminant Chlamydia psittaci and its relation to mouse virulence, Vet. Microbiol. (1992) 31:263–271. [CrossRef] [PubMed] [Google Scholar]
  • Salinas J., Souriau A., De Sa C., Andersen A.A., Rodolakis A., Serotype 2-specific antigens from ruminant strains of Chlamydia pecorum detected by monoclonal antibodies, Comp. Immunol. Microbiol. Infect. Dis. (1996) 19:155–161. [CrossRef] [PubMed] [Google Scholar]
  • Schachter J., Banks J., Sugg N., Sung M., Storz J., Meyer K.F., Serotyping of Chlamydia. I. Isolates of ovine origin, Infect. Immun. (1974) 9:92–94. [PubMed] [Google Scholar]
  • Schachter J., Banks J., Sugg N., Sung M., Storz J., Meyer K.F., Serotyping of Chlamydia: isolates of bovine origin, Infect. Immun. (1975) 11:904–907. [PubMed] [Google Scholar]
  • Schachter J., Stephens R.S., Timms P., Kuo C., Bavoil P.M., Birkelund S., et al., Radical changes to Chlamydial taxonomy are not necessary just yet, Int. J. Syst. Evol. Microbiol. (2001) 51:249. Author reply 251–243. [PubMed] [Google Scholar]
  • Schiller I., Koesters R., Weilenmann R., Thoma R., Kaltenboeck B., Heitz P., Pospischil A., Mixed infections with porcine Chlamydia trachomatis/pecorum and infections with ruminant Chlamydia psittaci serovar 1 associated with abortions in swine, Vet. Microbiol. (1997) 58:251–260. [CrossRef] [PubMed] [Google Scholar]
  • Spears P., Storz J., Biotyping of Chlamydia psittaci based on inclusion morphology and response to diethylaminoethyl-dextran and cycloheximide, Infect. Immun. (1979) 24:224–232. [PubMed] [Google Scholar]
  • Sriprakash K.S., Macavoy E.S., Characterization and sequence of a plasmid from the trachoma biovar of Chlamydia trachomatis, Plasmid (1987) 18:205–214. [CrossRef] [PubMed] [Google Scholar]
  • Sting R., Simmert J., Mandl J., Seemann G., Bay F., Muller K.F., et al., Coxiella burnetii infections and infections with bacteria of the genus Chlamydia in dairy cattle, Berl. Munch. Tierarztl. Wochenschr. (2000) 113:423–430 (in German). [PubMed] [Google Scholar]
  • Storz J., Smart R.A., Marriott M.E., Davis R.V., Polyarthritis of calves: isolation of psittacosis agents from affected joints, Am. J. Vet. Res. (1966) 27:633–641. [PubMed] [Google Scholar]
  • Storz J., Carroll E.J., Ball L., Faulkner L.C., Isolation of a psittacosis agent (Chlamydia) from semen and epididymis of bulls with seminal vesiculitis syndrome, Am. J. Vet. Res. (1968) 29:549–555. [PubMed] [Google Scholar]
  • Tam J.E., Davis C.H., Thresher R.J., Wyrick P.B., Location of the origin of replication for the 7.5-kb Chlamydia trachomatis plasmid, Plasmid (1992) 27:231–236. [CrossRef] [PubMed] [Google Scholar]
  • Tanaka C., Miyazawa T., Watarai M., Ishiguro N., Bacteriological survey of feces from feral pigeons in Japan, J. Vet. Med. Sci. (2005) 67:951–953. [CrossRef] [PubMed] [Google Scholar]
  • Warren K., Swan R., Bodetti T., Friend T., Hill S., Timms P., Ocular Chlamydiales infections of western barred bandicoots (Perameles bougainville) in Western Australia, J. Zoo Wildl. Med. (2005) 36:100–102. [CrossRef] [PubMed] [Google Scholar]
  • Wilson M.R., Dungworth D.L., Psittacosis lymphogranuloma-venereum group viruses in sheep. Comparisons between a faecal and an enzootic abortion strain, J. Comp. Pathol. (1963) 73:277–284. [PubMed] [Google Scholar]
  • Wilson M.R., Thomson R.G., Chlamydia pneumonia of calves, Res. Vet. Sci. (1968) 9:467–473. [PubMed] [Google Scholar]
  • Wittenbrink M.M., Schoon H.A., Schoon D., Mansfeld R., Bisping W., Endometritis in cattle experimentally induced by Chlamydia psittaci, Zentralbl. Veterinarmed. B (1993) 40:437–450. [PubMed] [Google Scholar]
  • Yousef Mohamad K., Rekiki A., Myers G., Bavoil P.M., Rodolakis A., Identification and characterisation of coding tandem repeat variants in incA gene of Chlamydophila pecorum, Vet. Res. (2008) 39–56. [EDP Sciences] [Google Scholar]
  • Yousef Mohamad K., Roche S.M., Myers G., Bavoil P.M., Laroucau K., Magnino S., et al., Preliminary phylogenetic identification of virulent Chlamydophila pecorum strains, Infect. Genet. Evol. (2008) 8:764–771. [CrossRef] [PubMed] [Google Scholar]