Free Access
Issue
Vet. Res.
Volume 41, Number 3, May–June 2010
Number of page(s) 16
DOI https://doi.org/10.1051/vetres/2010004
Published online 18 January 2010
How to cite this article Vet. Res. (2010) 41:32
  • Abbassy M.M., Osman M., Marzouk A.S., West Nile virus (Flaviviridae: Flavivirus) in experimentally infected Argas ticks (Acari: Argasidae), Am. J. Trop. Med. Hyg. (1993) 48:726–737. [PubMed] [Google Scholar]
  • Alba A., Busquets N., Allepuz A., Abad F.X., Serrano E., Casal J., West Nile virus surveillance in Catalonia, 2007, Epidémiol. Santé Anim. (2008) 54:80–89. [Google Scholar]
  • Austin R.J., Whiting T.L., Anderson R.A., Drebot M.A., An outbreak of West Nile virus-associated disease in domestic geese (Anser anser domesticus) upon initial introduction to a geographic region, with evidence of bird to bird transmission, Can. Vet. J. (2004) 45:117–123. [PubMed] [Google Scholar]
  • Autorino G.L., Battisti A., Deubel V., Ferrari G., Forletta R., Giovannini A., , West Nile virus epidemic in horses, Tuscany region, Italy, Emerg. Infect. Dis. (2002) 8:1372–1378. [PubMed] [Google Scholar]
  • Bakonyi T., Ivanics E., Erdelyi K., Ursu K., Ferenczi E., Weissenbock H., Nowotny N., Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe, Emerg. Infect. Dis. (2006) 12:618–623. [Google Scholar]
  • Balança G., Gaidet N., Savini G., Vollot B., Foucart A., Reiter P., , Low West Nile virus circulation in wild birds in an area of recurring outbreaks in Southern France, Vector Borne Zoonotic Dis. (2009) 9:737–741. [CrossRef] [PubMed] [Google Scholar]
  • Balenghien T., Fouque F., Sabatier P., Bicout D.J., Horse, bird and human-seeking behaviour and seasonanl abundance of mosquitoes in a West Nile focus of southern France, J. Med. Entomol. (2006) 43:936–946. [Google Scholar]
  • Bowman C., Gumel A.B., van den Driessche P., Wu J., Zhu H., A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol. (2005) 67:1107–1133. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bunning M.L., Bowen R.A., Cropp B., Sullivan K., Davis B., Komar N., , Experimental infection of horses with West Nile virus and their potential to infect mosquitoes and serve as amplifying hosts, Ann. N.Y. Acad. Sci. (2001) 951:338–339. [CrossRef] [Google Scholar]
  • Cernescu C., Nedelcu N.I., Tardei G., Ruta S., Tsai T.F., Continued transmission of West Nile virus to humans in southeastern Romania, 1997–1998, J. Infect. Dis. (2000) 181:710–712. [CrossRef] [PubMed] [Google Scholar]
  • Chevalier V., Lancelot R., Thiongane Y., Sall B., Diaite A., Mondet B., Rift valley fever in small ruminants, Senegal, 2003, Emerg. Infect. Dis. (2005) 11:1693–1700. [PubMed] [Google Scholar]
  • Chevalier V., Lancelot R., Diaite A., Mondet B., Sall B., De Lamballerie X., Serological assessment of West Nile fever virus activity in the pastoral system of Ferlo, Senegal, Ann. N.Y. Acad. Sci. (2006) 1081:216–225. [CrossRef] [Google Scholar]
  • Chevalier V., Lancelot R., Diaite A., Mondet B., De Lamballerie X., Use of sentinel chickens to study the transmission dynamics of West Nile virus in a sahelian ecosystem, Epidemiol. Infect. (2008) 136:525–528. [PubMed] [Google Scholar]
  • Chevalier V., Dupressoir A., Tran A., Diop Gottland C., Diallo M., , Environmental risk factors of West Nile infection of horses in the Senegal river basin, Epidemiol. Infect. (2010) (in press). [Google Scholar]
  • Chevalier V., Reynaud P., Lefrancois T., Durand B., Baillon F., Balanca G., , Predicting West Nile virus seroprevalence in wild birds in Senegal, Vector Borne Zoonotic Dis. (2009) 9:589–596. [Google Scholar]
  • Cornel A.J., Jupp P.G., Blackburn N.K., Environmental temperature on the vector competence of Culex univittatus (Diptera: Culicidae) for West Nile virus, J. Med. Entomol. (1993) 30:449–456. [Google Scholar]
  • Cramp S., The birds of the Western Palearctic, Vol. 6, Oxford University Press, 1992. [Google Scholar]
  • Cramp S., The birds of the Western Palearctic, Vol. 7, Oxford University Press, 1993. [Google Scholar]
  • Cramp S., The birds of the Western Palearctic, Vol. 8, Oxford University Press, 1994. [Google Scholar]
  • Cruz-Pacheco G., Esteva L., Montano-Hirose J.A., Vargas C., Modelling the dynamics of West Nile virus, Bull. Math. Biol. (2005) 67:1157–1172. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Dohm D., O’Guinn M., Turell M.J., Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus, J. Med. Entomol. (2002) 39:221–225. [CrossRef] [PubMed] [Google Scholar]
  • Durand B., Chevalier V., Pouillot R., Labie J., Marendat I., Murgue B., , West Nile virus outbreak in horses, Southern France, 2000: results of a serosurvey, Emerg. Infect. Dis. (2002) 8:777–782. [PubMed] [Google Scholar]
  • Durand B., Dauphin G., Zeller H., Labie J., Schuffenecker I., Murri S., , Serosurvey for West Nile virus in horses in Southern France, Vet. Rec. (2005) 157:711–713. [PubMed] [Google Scholar]
  • Erdelyi K., Ursu K., Ferenczi E., Szeredi L., Ratz F., Skare J., Bakonyi T., Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary, Vector Borne Zoonotic Dis. (2007) 7:181–188. [CrossRef] [PubMed] [Google Scholar]
  • Erickson S., Platt K., Tucker B., Evans R., Tiawsirisup S., Rowley W., The potential of Aedes triseriatus (Diptera: Culicidae) as an enzootic vector of West Nile virus, J. Med. Entomol. (2006) 43:966–970. [CrossRef] [PubMed] [Google Scholar]
  • Esteves A., Almeida A.P., Galao R.P., Parreira R., Piedade J., Rodrigues J.C., , West Nile virus in Southern Portugal, 2004, Vector Borne Zoonotic Dis. (2005) 5:410–413. [CrossRef] [PubMed] [Google Scholar]
  • Ezenwa V.O., Godsey M.S., King R.J., Guptill S.C., Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk, Proc. Biol. Sci. (2006) 273:109–117. [CrossRef] [PubMed] [Google Scholar]
  • Foppa I.M., Spielman A., Does reservoir host mortality enhance transmission of West Nile virus?, Theor. Biol. Med. Model. (2007) 4:17. [CrossRef] [PubMed] [Google Scholar]
  • Fyodorova M.V., Savage H.M., Lopatina J.V., Bulgakova T.A., Ivanitsky A.V., Platonova O.V., Platonov A.E., Evaluation of potential West Nile virus vectors in Volgograd region, Russia, 2003 (Diptera: Culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes, J. Med. Entomol. (2006) 43:552–563. [Google Scholar]
  • Gad A., el Said S., Soliman B., Hassan A., Shoukry A., Distribution and bionomics of Egyptian Culex univittatus (Theobald), J. Egypt Soc. Parasitol. (1987) 17:17–31. [PubMed] [Google Scholar]
  • Gad A., Feinsod F., Soliman B., Said S., Survival estimates for adult Culex pipiens in the Nile Delta, Acta Trop. (1989) 46:173–179. [CrossRef] [PubMed] [Google Scholar]
  • Hamer G.L., Walker E.D., Brawn J.D., Loss S.R., Ruiz M.O., Goldberg T.L. , , Rapid amplification of West Nile virus: the role of hatch-year birds, Vector Borne Zoonotic Dis. (2008) 8:57–67. [Google Scholar]
  • Hartemink N.A., Davis S.A., Reiter P., Hubalek Z., Heesterbeek J.A., Importance of bird-to-bird transmission for the establishment of West Nile virus, Vector Borne Zoonotic Dis. (2007) 7:575–584. [CrossRef] [PubMed] [Google Scholar]
  • Hubalek Z., Halouzka J., West Nile fever – a reemerging mosquito-borne viral disease in Europe, Emerg. Infect. Dis. (1999) 5:643–650. [CrossRef] [PubMed] [Google Scholar]
  • Hubalek Z., Halouzka J., Juricova Z., Sikutova S., Rudolf I., Honza M., , Serologic survey of birds for West Nile flavivirus in southern Moravia (Czech Republic), Vector Borne Zoonotic Dis. (2008) 8:659–666. [CrossRef] [PubMed] [Google Scholar]
  • Jourdain E., Gauthier-Clerc M., Sabatier P., Grege O., Greenland T., Leblond A., , Magpies as hosts for West Nile virus, Southern France, Emerg. Infect. Dis. (2008) 14:158–160. [CrossRef] [PubMed] [Google Scholar]
  • Jourdain E., Zeller H.G., Sabatier P., Murri S., Kayser Y., Greenland T., , Prevalence of West Nile virus neutralizing antibodies in wild birds from the Camargue area, Southern France, J. Wildl. Dis. (2008) 44:766–771. [CrossRef] [PubMed] [Google Scholar]
  • Jupp P., The susceptibility of four South African species of Culex to West Nile and Sindbis viruses by two different infecting methods, Mosq. News (1976) 36:166–173. [Google Scholar]
  • Jupp P.G., McIntosh B.M., Quantitative experiments on the vector capability of Culex (Culex) univittatus Theobald with West Nile and Sindbis viruses, J. Med. Entomol. (1970) 7:371–373. [PubMed] [Google Scholar]
  • Jupp P.G., Laboratory studies on the transmission of West Nile virus by Culex (Culex) univittatus Theobald; factors influencing the transmission rate, J. Med. Entomol. (1974) 11:455–458. [PubMed] [Google Scholar]
  • Juricova Z., Pinowski J., Literak I., Hahm K.H., Romanowski J., Antibodies to alphavirus, flavivirus, and bunyavirus arboviruses in house sparrows (Passer domesticus) and tree sparrows (P. montanus) in Poland, Avian Dis. (1998) 42:182–185. [CrossRef] [PubMed] [Google Scholar]
  • Kecsemeti S., Bajmocy E., Bacsadi A., Kiss I., Bakoni T., Encephalitis due to West Nile virus in a sheep, Vet. Rec. (2007) 161:568–569. [CrossRef] [PubMed] [Google Scholar]
  • Komar N., Langevin S., Hinten S., Nemeth N., Edwards E., Hettler D., , Experimental infection of North American birds with the New York 1999 strain of West Nile virus, Emerg. Infect. Dis. (2003) 9:311–322. [Google Scholar]
  • Lecollinet S., Lefrançois T., Durand B., Leblond A., Dauphin G., de Goer J., Zientara S., Surveillance de l’infection équine à virus West-Nile en France: 2000–2007, Epidémiol. Santé Anim. (2008) 54:69–80. [Google Scholar]
  • Lewis M., Renclawowicz J., van den Driessche P., Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol. (2006) 68:3–23. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lopez G., Jimenez-Clavero M.A., Tejedor C.G., Soriguer R., Figuerola J., Prevalence of West Nile virus neutralizing antibodies in Spain is related to the behavior of migratory birds, Vector Borne Zoonotic Dis. (2008) 8:615–621. [CrossRef] [PubMed] [Google Scholar]
  • Loss S.R., Hamer G.L., Goldberg T.L., Ruiz M.O., Kitron U.D., Walker E.D., Brawn J.D., Nestling passerines are not important hosts for amplification of West Nile virus in Chicago, Illinois, Vector Borne Zoonotic Dis. (2009) 9:13–18. [CrossRef] [PubMed] [Google Scholar]
  • Ludwig G.V., Cook R.S., McLean R.G., Francy D.B., Viremic enhancement due to transovarially acquired antibodies to St. Louis encephalitis virus in birds, J. Wildl. Dis. (1986) 22:326–334. [PubMed] [Google Scholar]
  • Mailles A., Dellamonica P., Zeller H., Durand J.P., Zientara S., Gofette R., , Human and equine West-Nile virus infections in France, August–September 2003, Eurosurveillance (2003) 7:2312. [Google Scholar]
  • Moller A.P., Senescence in relation to latitude and migration in birds, J. Evol. Biol. (2007) 20:750–757. [CrossRef] [PubMed] [Google Scholar]
  • Mondet B., Diaïté A., Fall A.G., Chevalier V., Relations entre la pluviométrie et le risque de transmission virale par les moustiques : cas du virus de la Rift Valley fever (RVF) dans le Ferlo (Sénégal), Environnement, Risques et Santé (2005) 4:125–129. [Google Scholar]
  • Moreau R.E., The Palaearctic–African bird migration systems, Academic Press, London, UK and New York, NY, 1972. [Google Scholar]
  • Morel G., Contribution à la synéologie des oiseaux du Sahel sénégalais, Mém. ORSTOM (1968) 179. [Google Scholar]
  • Morel G., Morel M., Les oiseaux de Sénégambie, Paris, ORSTOM, 1990. [Google Scholar]
  • Mumcuoglu K.Y., Banet-Noach C., Malkinson M., Shalom U., Galun R., Argasid ticks as possible vectors of West Nile virus in Israel, Vector Borne Zoonotic Dis. (2005) 5:65–71. [Google Scholar]
  • Murgue B., Murri S., Zientara S., Durand B., Durand J.P., Zeller H., West Nile outbreak in horses in Southern France, 2000: the return after 35 years, Emerg. Infect. Dis. (2001) 7:692–696. [CrossRef] [PubMed] [Google Scholar]
  • Murgue B., Zeller H., Deubel V., The ecology and epidemiology of West Nile virus in Africa, Europe and Asia, Curr. Top. Microbiol. Immunol. (2002) 267:195–221. [PubMed] [Google Scholar]
  • Nasci R.S., Savage H.M., White D.J., Miller J.R., Cropp B.C., Godsey M.S., , West Nile virus in overwintering Culex mosquitoes, New York City, 2000, Emerg. Infect. Dis. (2001) 7:742–744. [CrossRef] [PubMed] [Google Scholar]
  • Nemeth N.M., Oesterle P.T., Bowen R.A., Passive immunity to West Nile virus provides limited protection in a common passerine species, Am. J. Trop. Med. Hyg. (2008) 79:283–290. [PubMed] [Google Scholar]
  • Petersen L.R., Roerigh J.T., West Nile virus: a reemerging global pathogen, Rev. Biomed. (2001) 12:208–216. [Google Scholar]
  • Platonov A.E., Shipulin G.A., Shipulina O.Y., Tyutyunnik E.N., Frolochkina T.I., Lanciotti R.S., , Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999, Emerg. Infect. Dis. (2001) 7:128–132. [CrossRef] [PubMed] [Google Scholar]
  • Platonov A.E., Fedorova M.V., Karan L.S., Shopenskaya T.A., Platonova O.V., Zhuravlev V.I., Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: Culicidae) bionomics, Parasitol. Res. (2008) 103(Suppl. 1):S45–S53. [CrossRef] [PubMed] [Google Scholar]
  • Poncon N., Toty C., L’Ambert G., le Goff G., Brengues C., Schaffner F., Fontenille D., Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France, Med. Vet. Entomol. (2007) 21:350–357. [CrossRef] [PubMed] [Google Scholar]
  • R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0, 2009. [Google Scholar]
  • Rappole J.H., Compton B.W., Leimgruber P., Robertson J., King D.I., Renner S.C., Modeling movement of West Nile virus in the Western hemisphere, Vector Borne Zoonotic Dis. (2006) 6:128–139. [CrossRef] [PubMed] [Google Scholar]
  • Rizzoli A., Rosa R., Rosso F., Buckley A., Gould E.A., West Nile virus circulation detected in northern Italy in sentinel chickens, Vector Borne Zoonotic Dis. (2007) 3:411–417. [CrossRef] [Google Scholar]
  • Savage H.M., Ceianu C., Nicolescu G., Karabatsos N., Lanciotti R., Vladimirescu A., , Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes, Am. J. Trop. Med. Hyg. (1999) 61:600–611. [Google Scholar]
  • Schmaljohann H., Liechti F., Bruderer B., Songbird migration across the Sahara: the non-stop hypothesis rejected!, Proc. Biol. Sci. (2007) 274:735–739. [CrossRef] [PubMed] [Google Scholar]
  • Summers-Smith J., The sparrows: a study of the genus Passer, A&C Black Publishers Ltd, 1988, p. 342. [Google Scholar]
  • Tiawsirisup S., Platt K., Evans R., Rowley W., Susceptibility of Ochlerotatus trivittatus (Coq.), Aedes albopictus (Skuse), and Culex pipiens (L.) to West Nile virus infection, Vector Borne Zoonotic Dis. (2004) 4:190–197. [PubMed] [Google Scholar]
  • Tsai T.F., Factors in the changing epidemiology of Japanese encephalitis and West Nile fever, in: Saluzzo R.F., Dodet B. (Eds.), Factors in the emergence of arbovirus diseases, Elsevier, Paris, 1997, pp. 179–189. [Google Scholar]
  • Tsai T.F., Popovici F., Cernescu C., Campbell G.L., Nedelcu N.I., West Nile encephalitis epidemic in southeastern Romania, Lancet (1998) 352:767–771. [CrossRef] [PubMed] [Google Scholar]
  • Ward M.P., Epidemic West Nile virus encephalomyelitis: a temperature-dependent, spatial model of disease dynamics, Prev. Vet. Med. (2005) 71:253–264. [CrossRef] [PubMed] [Google Scholar]
  • Weinberger M., Pitlik S.D., Gandacu D., Lang R., Nassar F., Ben David D., , West Nile fever outbreak, Israel, 2000: epidemiologic aspects, Emerg. Infect. Dis. (2001) 7:686–691. [CrossRef] [PubMed] [Google Scholar]
  • Wonham M.J., de-Camino-Beck T., Lewis M.A., An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. Biol. Sci. (2004) 271:501–507. [Google Scholar]
  • Zeller H.G., Schuffenecker I., West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas, Eur. J. Clin. Microbiol. Infect. Dis. (2004) 23:147–156. [CrossRef] [PubMed] [Google Scholar]
  • Zou L., Miller S.N., Schmidtmann E.T., A GIS tool to estimate West Nile virus risk based on a degree-day model, Environ. Monit. Assess. (2007) 129:413–420. [CrossRef] [PubMed] [Google Scholar]