Open Access
Issue
Vet. Res.
Volume 41, Number 1, January-February 2010
Number of page(s) 16
DOI https://doi.org/10.1051/vetres/2009055
Published online 01 October 2009
How to cite this article Vet. Res. (2010) 41:07
References of  Vet. Res. (2010) 41:07
  1. Badley A.D., McElhinny J.A., Leibson P.J., Lynch D.H., Alderson M.R., Paya C.V., Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes, J. Virol. (1996) 70:199–206 [PubMed].
  2. Bauhofer O., Summerfield A., Sakoda Y., Tratschin J.D., Hofmann M.A., Ruggli N., Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation, J. Virol. (2007) 81:3087–3096 [CrossRef] [PubMed].
  3. Bensaude E., Turner J.L.,Wakeley P.R.,SweetmanD.A., Pardieu C., Drew T.W., et al., Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells, J. Gen. Virol. (2004) 85:1029–1037 [CrossRef] [PubMed].
  4. Borca M.V., Gudmundsdottir I., Fernandez-Sainz I.J., Holinka L.G., Risatti G.R., Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia, Virus Res. (2008) 138:89–96 [CrossRef] [PubMed].
  5. Chawla-Sarkar M., Lindner D.J., Liu Y.F., Williams B.R., Sen G.C., Silverman R.H., Borden E.C., Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis, Apoptosis (2003) 8:237–249 [CrossRef] [PubMed].
  6. Choi C., Hwang K.K., Chae C., Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis, Arch. Virol. (2004) 149:875–889 [CrossRef] [PubMed].
  7. Gil S., Sepulveda N., Albina E., Leitao A., Martins C., The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha,TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60, Arch. Virol. (2008) 153:1845–1854 [CrossRef] [PubMed].
  8. Haller O., Kochs G., Weber F., Interferon, Mx, and viral countermeasures, Cytokine Growth Factor Rev. (2007) 18:425–433 [CrossRef] [PubMed].
  9. Hensley L.E., Young H.A., Jahrling P.B., Geisbert T.W., Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily, Immunol. Lett. (2002) 80:169–179 [CrossRef] [PubMed].
  10. Herbeuval J.P., Hardy A.W., Boasso A., Anderson S.A., Dolan M.J., Dy M., Shearer G.M., Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells, Proc. Natl. Acad. Sci. USA (2005) 102:13974–13979 [CrossRef] [PubMed].
  11. Herbeuval J.P., Shearer G.M., HIV-1 immunopathogenesis: how good interferon turns bad, Clin. Immunol. (2007) 123:121–128 [CrossRef] [PubMed].
  12. Jamin A., Gorin S., Le Potier M.F., Kuntz-Simon G., Characterization of conventional and plasmacytoid dendritic cells in swine secondary lymphoid organs and blood, Vet. Immunol. Immunopathol. (2006) 114:224–237 [CrossRef] [PubMed].
  13. Jamin A., Gorin S., Cariolet R., Le Potier M.F., Kuntz-Simon G., Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs, Vet. Res. (2008) 39:7 [CrossRef] [PubMed].
  14. Jiang J., Gross D., Nogusa S., Elbaum P., Murasko D.M., Depletion of T cells by type I interferon: differences between young and aged mice, J. Immunol. (2005) 175:1820–1826 [PubMed].
  15. Kamphuis E., Junt T., Waibler Z., Forster R., Kalinke U., Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia, Blood (2006) 108:3253–3261 [CrossRef] [PubMed].
  16. Kash J.C., Muhlberger E., Carter V., Grosch M., Perwitasari O., Proll S.C., et al., Global suppression of the host antiviral response by Ebola- and Marburgviruses: increased antagonism of the type I interferon response is associated with enhanced virulence, J. Virol. (2006) 80:3009–3020 [CrossRef] [PubMed].
  17. Kim K., Fisher M.J., Xu S.Q., el-Deiry W.S., Molecular determinants of response to TRAIL in killing of normal and cancer cells, Clin. Cancer Res. (2000) 6:335–346 [PubMed].
  18. Kurbanov B.M., Fecker L.F., Geilen C.C., Sterry W., Eberle J., Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4, Oncogene (2007) 26:3364–3377 [CrossRef] [PubMed].
  19. Le Meur N., Lamirault G., Bihouee A., Steenman M., Bedrine-Ferran H., Teusan R., et al., A dynamic, webaccessible resource to process raw microarray scan data into consolidated gene expression values: importance of replication, Nucleic Acids Res. (2004) 32:5349–5358 [CrossRef] [PubMed].
  20. Leaman D.W., Chawla-Sarkar M., Vyas K., Reheman M.,Tamai K.,Toji S., Borden E.C., Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferonstimulated gene that augments TRAIL Apo2L-induced apoptosis, J. Biol. Chem. (2002) 277:28504–28511 [CrossRef] [PubMed].
  21. Leaman D.W., Chawla-Sarkar M., Jacobs B., Vyas K., Sun Y., Ozdemir A., et al., Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-beta compared with IFN-alpha2, J. Interferon Cytokine Res. (2003) 23:745–756 [CrossRef] [PubMed].
  22. Lee W.C., Wang C.S., Chien M.S., Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection, Vet. Microbiol. (1999) 67:17–29 [CrossRef] [PubMed].
  23. Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods (2001) 25:402–408 [CrossRef] [PubMed].
  24. Manna S.K.,MukhopadhyayA.,Aggarwal B.B., IFNalpha suppresses activation of nuclear transcription factors NF-kappa B and activator protein 1 and potentiates TNFinduced apoptosis, J. Immunol. (2000) 165:4927–4934 [PubMed].
  25. Mayer D., Hofmann M.A., Tratschin J.D., Attenuation of classical swine fever virus by deletion of the viral N(pro) gene, Vaccine (2004) 22:317–328 [CrossRef] [PubMed].
  26. McCullough K.C., Ruggli N., Summerfield A., Dendritic cells-At the front-line of pathogen attack, Vet. Immunol. Immunopathol. (2009) 128:7–15 [CrossRef] [PubMed].
  27. McNally J.M., Zarozinski C.C., Lin M.Y., Brehm M.A., Chen H.D., Welsh R.M., Attrition of bystander CD8 T cells during virus-induced T-cell and interferon responses, J. Virol. (2001) 75:5965–5976 [CrossRef] [PubMed].
  28. Micali O.C., Cheung H.H., Plenchette S., Hurley S.L., Liston P., LaCasse E.C., Korneluk R.G., Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta, BMC Cancer (2007) 7:52 [CrossRef] [PubMed].
  29. Moennig V., Floegel-Niesmann G., Greiser- Wilke I., Clinical signs and epidemiology of classical swine fever: a review of new knowledge, Vet. J. (2003) 165:11–20 [CrossRef] [PubMed].
  30. Oshima K., Yanase N., Ibukiyama C., Yamashina A., Kayagaki N., Yagita H., Mizuguchi J., Involvement of TRAIL/TRAIL-R interaction in IFNalpha-induced apoptosis of Daudi B lymphoma cells, Cytokine (2001) 14:193–201 [CrossRef] [PubMed].
  31. Risatti G.R., Borca M.V., Kutish G.F., Lu Z., Holinka L.G., French R.A., et al., The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine, J. Virol. (2005) 79:3787–3796 [CrossRef] [PubMed].
  32. Risatti G.R., Holinka L.G., Lu Z., Kutish G.F., Tulman E.R., French R.A., et al., Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine, Virology (2005) 343:116–127 [CrossRef] [PubMed].
  33. Ruggli N., Bird B.H., Liu L., Bauhofer O., Tratschin J.D., Hofmann M.A., N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction, Virology (2005) 340:265–276 [CrossRef] [PubMed].
  34. Ruggli N., Summerfield A., Fiebach A.R., Guzylack-Piriou L., Bauhofer O., Lamm C.G., et al., Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro, J. Virol. (2009) 83:817–829 [CrossRef] [PubMed].
  35. Sainz I.F., Holinka L.G., Lu Z., Risatti G.R., Borca M.V., Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine, Virology (2008) 370:122–129 [CrossRef] [PubMed].
  36. Sanchez-Cordon P.J., Nunez A., Salguero F.J., Pedrera M., Fernandez de Marco M., Gomez-Villamandos J.C., Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines, Vet. Pathol. (2005) 42:477–488 [CrossRef] [PubMed].
  37. Seago J., Hilton L., Reid E., Doceul V., Jeyatheesan J., Moganeradj K., et al., The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3, J. Gen. Virol. (2007) 88:3002–3006 [CrossRef] [PubMed].
  38. Shiow L.R., Rosen D.B., Brdickova N., Xu Y., An J., Lanier L.L., et al., CD69 acts downstream of interferon-alpha/betato inhibit S1P1 and lymphocyte egress from lymphoid organs, Nature (2006) 440:540–544 [CrossRef] [PubMed].
  39. Summerfield A., Knotig S.M., McCullough K.C., Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death, J. Virol. (1998) 72:1853–1861 [PubMed].
  40. Summerfield A., McNeilly F., Walker I., Allan G., Knoetig S.M., McCullough K.C., Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever, Vet. Immunol. Immunopathol. (2001) 78:3–19 [CrossRef] [PubMed].
  41. Summerfield A., Alves M., Ruggli N., de Bruin M.G., McCullough K.C., High IFN-alpha responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever, J. Interferon Cytokine Res. (2006) 26:248–255 [CrossRef] [PubMed].
  42. Sun J., Jiang Y., Shi Z., Yan Y., Guo H., He F., Tu C., Proteomic alteration of PK-15 cells after infection by classical swine fever virus, J. Proteome Res. (2008) 7:5263–5269 [CrossRef] [PubMed].
  43. Tanaka N., Sato M., Lamphier M.S., Nozawa H., Oda E., Noguchi S., et al., Type I interferons are essential mediators of apoptotic death in virally infected cells, Genes Cells (1998) 3:29–37 [CrossRef] [PubMed].
  44. Thyrell L., Erickson S., Zhivotovsky B., Pokrovskaja K., Sangfelt O., Castro J., et al., Mechanisms of Interferon-alpha induced apoptosis in malignant cells, Oncogene (2002) 21:1251–1262 [CrossRef] [PubMed].
  45. Tusher V.G., Tibshirani R., Chu G., Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl. Acad. Sci. USA (2001) 98:5116–5121 [CrossRef] [PubMed].
  46. Ubol S., Masrinoul P., Chaijaruwanich J., Kalayanarooj S., Charoensirisuthikul T., Kasisith J., Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever, J. Infect. Dis. (2008) 197:1459–1467 [CrossRef] [PubMed].
  47. Wang Y., Wang Q., Lu X., Zhang C., Fan X., Pan Z., et al., 12-nt insertion in 30 untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge, Virology (2008) 374:390–398 [CrossRef] [PubMed].
  48. Yanase N., Kanetaka Y., Mizuguchi J., Interferonalpha-induced apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent and -independent manner, Oncol. Rep. (2007) 18:1031–1038 [PubMed].
  49. Zaffuto K.M., Piccone M.E., Burrage T.G., Balinsky C.A., Risatti G.R., Borca M.V., et al., Classical swine fever virus inhibits nitric oxide production in infected macrophages, J. Gen. Virol. (2007) 88:3007–3012 [CrossRef] [PubMed].