Free Access
Issue
Vet. Res.
Volume 40, Number 6, November-December 2009
Number of page(s) 12
DOI https://doi.org/10.1051/vetres/2009045
Published online 13 August 2009
How to cite this article Vet. Res. (2009) 40:64
References of  Vet. Res. (2009) 40:64
  1. Bimczok D., Döll S., Rau H., Goyarts T., Wundrack N., Naumann M., et al., The Fusarium toxin deoxynivalenol disrupts phenotype and function of monocyte-derived cendritic cells in vivo and in vitro, Immunobiology (2007) 212:655–666 [CrossRef] [PubMed].
  2. Böhm J., The significance of the mycotoxins deoxynivalenol, zearalenone and ochratoxin A for agricultural domestic animals, Arch. Tierernahr. (1992) 42:95–111 [PubMed] (in German).
  3. Bokoch G.M., Biology of the p21-activated kinases, Annu. Rev. Biochem. (2003) 72:743–81 [CrossRef] [PubMed].
  4. Bottalico A., Perrone G., Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe, Eur. J. Plant Pathol. (2002) 108:611–624 [CrossRef].
  5. Boyen F., Pasmans F., Donné E., Van Immerseel F., Adriaensen C., Hernalsteens J.-P., et al., Role of SPI-1 in the interaction of Salmonella Typhimurium with porcine macrophages, Vet. Microbiol. (2006) 113:35–44 [CrossRef] [PubMed].
  6. Boyen F., Pasmans F., Van Immerseel F., Morgan E., Botteldoorn N., Heyndrickx M., et al., A limited role for SsrA/B in persistent Salmonella Typhimurium infections in pigs, Vet. Microbiol. (2008) 128:364–373 [CrossRef] [PubMed].
  7. Boyen F., Haesebrouck F., Maes D., Van Immerseel F., Ducatelle R., Pasmans F., Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control, Vet. Microbiol. (2008) 130:1–19 [CrossRef] [PubMed].
  8. Cole R.A., Cox R.H., Handbook of toxic fungal metabolites, Academic Press, New York, 1981.
  9. Dänicke S., Goyarts T., Döll S., Grove N., Spolders M., Flachowsky G., Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs, Toxicol. Lett. (2006) 165:297–311 [CrossRef] [PubMed].
  10. Das D., Pintucci G., Stern A., MAPK-dependent expression of p21(WAF) and p27(kip1) in PMAinduced differentiation of HL60 cells, FEBS Lett. (2000) 472:50–52 [CrossRef] [PubMed].
  11. Döll S., Dänicke S., In vivo detoxification of Fusarium toxins, Arch. Anim. Nutr. (2004) 58:419–441 [CrossRef] [PubMed].
  12. Dom P., Haesebrouck F., De-Baetselier P., Stimulation and suppression of the oxygenation activity of porcine pulmonary alveolar macrophages by Actinobacillus pleuropneumoniae and its metabolites, Am. J. Vet. Res. (1992) 53:1113–1118 [PubMed].
  13. Donné E., Pasmans F., Boyen F., Van Immerseel F., Adriaensen C., Hernalsteens J.-P., et al., Survival of Salmonella serovar Typhimurium inside porcine monocytes is associated with complement binding and suppression of the production of reactive oxygen species, Vet. Microbiol. (2005) 107:205–214 [CrossRef] [PubMed].
  14. Favata M.F., Horiuchi K.Y., Manos E.J., Daulerio A.J., Stradley D.A., Feeser W.S., et al., Identification of a novel inhibitor of mitogen-activated protein kinase kinase, J. Biol. Chem. (1998) 273:18623–18632 [CrossRef] [PubMed].
  15. Fedorka-Cray P.J., Gray J.T., Way C., Salmonella infections in pigs, in: Wray C., Wray A. (Eds.), Salmonella in domestic animals, CAB International, Wallingford, 2000, pp. 191–207.
  16. Fink-Gremmels J., Mycotoxins: their implications for human and animal health, Vet. Q. (1999) 21:115–120 [PubMed].
  17. Finlay B.B., Ruschkowski S., Dedhar S., Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells, J. Cell Sci. (1991) 99:283–296 [PubMed].
  18. Fukata T., Sasai K., Baba E., Arakawa A., Effect of ochratoxin A on Salmonella Typhimurium-challenged layer chickens, Avian Dis. (1996) 40:924–926 [CrossRef] [PubMed].
  19. Goyarts T., Dänicke S., Tiemann U., Rothkötter H.-J., Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes, Toxicol. In Vitro (2006) 20:858–867 [CrossRef] [PubMed].
  20. Guiney D.G., Lesnick M., Targeting of the actin cytoskeleton during the infection by Salmonella strains, Clin. Immunol. (2005) 114:248–255 [CrossRef] [PubMed].
  21. Hara-Kudo Y., Sugita-Konishi Y., Kasuga F., Kumagai S., Effects of deoxynivalenol on Salmonella enteritidis infection, Mycotoxins (1996) 42:51–55.
  22. Haschek W.M., Voss K.A., Beasley V.R., Selected mycotoxins affecting animal and human health, in: Handbook of Toxicological Pathology, Academic Press, London, 2002, pp. 645–699.
  23. Lundberg U., Vinatzer U., Berdnik D., von Gabain A., Baccarini M., Growth phase-regulated induction of Salmonella-induced macrophages apoptosis correlates with transient expression of SPI-1 genes, J. Bacteriol. (1999) 181:3433–3437 [PubMed].
  24. Marcus S.L., Brumell J.H., Pfeifer C.G., Finlay, B., Salmonella pathogenicity islands: big virulence in small packages, Microbes Infect. (2000) 2:145–156 [CrossRef] [PubMed].
  25. Monack D.M., Raupach B., Hromockyi A.E., Falkow S., Salmonella Typhimurium invasion induces apoptosis in infected macrophages, Proc. Natl. Acad. Sci. USA (1996) 93:9833–9838 [CrossRef] [PubMed].
  26. Pestka J.J., Zhou H.R., Moon Y., Chung Y.J., Cellular and molecular mechanism for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox, Toxicol. Lett. (2004) 153:61–73 [CrossRef] [PubMed].
  27. Pestka J.J., Mechanisms of deoxynivalenolinduced gene expression and apoptosis, Food Addit. Contam. (2008) 24:1–13.
  28. Pinton P., Accensi F., Beauchamp E., Cossalter A.-M., Callu P., Grosjean F., Oswald I.P., Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune response, Toxicol. Lett. (2008) 177:215–222 [CrossRef] [PubMed].
  29. Procyk K.J., Kovarik P., Von Gabain A., Baccarini M., Salmonella Typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates, Infect. Immun. (1999) 67:1011–1017 [PubMed].
  30. Rotter B.A., Prelusky D.B., Toxicology of deoxynivalenol, J. Toxicol. Environ. Health (1996) 48:1–34 [CrossRef] [PubMed].
  31. Sergent T., Parys M., Garsou S., Pussemier L., Schneider Y.-J., Larondelle Y., Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations, Toxicol. Lett. (2006) 164:167–176 [CrossRef] [PubMed].
  32. Stoev S.D., Goundasheva D., Mirtcheva T., Mantle P.G., Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis, Exp. Toxicol. Pathol. (2000) 52:287–296 [PubMed].
  33. Tai J.H., Pestka J.J., Impaired murine resistance to Salmonella Typhimurium following oral exposure to the trichothecene T-2 toxin, Food Chem. Toxicol. (1988) 26:691–698 [CrossRef] [PubMed].
  34. Trenholm H.L., Prelusky D.B., Young J.C., Miller J.D., Reducing mycotoxins in animals feeds, Agriculture Canada Publication 1827E. Communications Branch, Agriculture Canada, Ottawa, 1988.
  35. Valdivia R.H., Falkow S., Bacterial genetics by flow cytometry: rapid isolation of Salmonella Typhimurium acid-inducible promoters by differential fluorescence induction, Mol. Microbiol. (1996) 22:367–378 [CrossRef] [PubMed].
  36. Van Immerseel F., De Buck J., Boyen F., Bohez L., Pasmans F., Sevcik M., et al., Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enteric serovar Enteritidis, Appl. Environ. Microbiol. (2004) 70:3582–3587 [CrossRef] [PubMed].
  37. Yang H., Chung D.H., Kim Y.B., Choi Y.H., Moon Y., Ribotoxic mycotoxin deoxynivalenol induced G2/3 cell cycle arrest via p21 $^{\rm Cip/WAF1}$ mRNA stabilization in human epithelial cells, Toxicology (2008) 243:145–154 [CrossRef] [PubMed].
  38. Zhou H.R., Lau A.S., Pestka J.J., Role of double stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response, Toxicol. Sci. (2003) 74:335–344 [CrossRef] [PubMed].
  39. Zhou H.R., Jia Q., Pestka J.J., Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck, Toxicol. Sci. (2005) 85:916–926 [CrossRef] [PubMed].