Free Access
Issue |
Vet. Res.
Volume 40, Number 6, November-December 2009
|
|
---|---|---|
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/vetres/2009045 | |
Published online | 13 August 2009 | |
How to cite this article | Vet. Res. (2009) 40:64 |
References of
Vet. Res. (2009) 40:64
- Bimczok D., Döll S., Rau H., Goyarts T., Wundrack N., Naumann M., et al., The Fusarium toxin deoxynivalenol disrupts phenotype and function of monocyte-derived cendritic cells in vivo and in vitro, Immunobiology (2007) 212:655–666 [CrossRef] [PubMed].
- Böhm J., The significance of the mycotoxins deoxynivalenol, zearalenone and ochratoxin A for agricultural domestic animals, Arch. Tierernahr. (1992) 42:95–111 [PubMed] (in German).
- Bokoch G.M., Biology of the p21-activated kinases, Annu. Rev. Biochem. (2003) 72:743–81 [CrossRef] [PubMed].
- Bottalico A., Perrone G., Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe, Eur. J. Plant Pathol. (2002) 108:611–624 [CrossRef].
- Boyen F., Pasmans F., Donné E., Van Immerseel F., Adriaensen C., Hernalsteens J.-P., et al., Role of SPI-1 in the interaction of Salmonella Typhimurium with porcine macrophages, Vet. Microbiol. (2006) 113:35–44 [CrossRef] [PubMed].
- Boyen F., Pasmans F., Van Immerseel F., Morgan E., Botteldoorn N., Heyndrickx M., et al., A limited role for SsrA/B in persistent Salmonella Typhimurium infections in pigs, Vet. Microbiol. (2008) 128:364–373 [CrossRef] [PubMed].
- Boyen F., Haesebrouck F., Maes D., Van Immerseel F., Ducatelle R., Pasmans F., Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control, Vet. Microbiol. (2008) 130:1–19 [CrossRef] [PubMed].
- Cole R.A., Cox R.H., Handbook of toxic fungal metabolites, Academic Press, New York, 1981.
- Dänicke S., Goyarts T., Döll S., Grove N., Spolders M., Flachowsky G., Effects of the Fusarium toxin deoxynivalenol on tissue protein synthesis in pigs, Toxicol. Lett. (2006) 165:297–311 [CrossRef] [PubMed].
- Das D., Pintucci G., Stern A., MAPK-dependent expression of p21(WAF) and p27(kip1) in PMAinduced differentiation of HL60 cells, FEBS Lett. (2000) 472:50–52 [CrossRef] [PubMed].
- Döll S., Dänicke S., In vivo detoxification of Fusarium toxins, Arch. Anim. Nutr. (2004) 58:419–441 [CrossRef] [PubMed].
- Dom P., Haesebrouck F., De-Baetselier P., Stimulation and suppression of the oxygenation activity of porcine pulmonary alveolar macrophages by Actinobacillus pleuropneumoniae and its metabolites, Am. J. Vet. Res. (1992) 53:1113–1118 [PubMed].
- Donné E., Pasmans F., Boyen F., Van Immerseel F., Adriaensen C., Hernalsteens J.-P., et al., Survival of Salmonella serovar Typhimurium inside porcine monocytes is associated with complement binding and suppression of the production of reactive oxygen species, Vet. Microbiol. (2005) 107:205–214 [CrossRef] [PubMed].
- Favata M.F., Horiuchi K.Y., Manos E.J., Daulerio A.J., Stradley D.A., Feeser W.S., et al., Identification of a novel inhibitor of mitogen-activated protein kinase kinase, J. Biol. Chem. (1998) 273:18623–18632 [CrossRef] [PubMed].
- Fedorka-Cray P.J., Gray J.T., Way C., Salmonella infections in pigs, in: Wray C., Wray A. (Eds.), Salmonella in domestic animals, CAB International, Wallingford, 2000, pp. 191–207.
- Fink-Gremmels J., Mycotoxins: their implications for human and animal health, Vet. Q. (1999) 21:115–120 [PubMed].
- Finlay B.B., Ruschkowski S., Dedhar S., Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells, J. Cell Sci. (1991) 99:283–296 [PubMed].
- Fukata T., Sasai K., Baba E., Arakawa A., Effect of ochratoxin A on Salmonella Typhimurium-challenged layer chickens, Avian Dis. (1996) 40:924–926 [CrossRef] [PubMed].
- Goyarts T., Dänicke S., Tiemann U., Rothkötter H.-J., Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes, Toxicol. In Vitro (2006) 20:858–867 [CrossRef] [PubMed].
- Guiney D.G., Lesnick M., Targeting of the actin cytoskeleton during the infection by Salmonella strains, Clin. Immunol. (2005) 114:248–255 [CrossRef] [PubMed].
- Hara-Kudo Y., Sugita-Konishi Y., Kasuga F., Kumagai S., Effects of deoxynivalenol on Salmonella enteritidis infection, Mycotoxins (1996) 42:51–55.
- Haschek W.M., Voss K.A., Beasley V.R., Selected mycotoxins affecting animal and human health, in: Handbook of Toxicological Pathology, Academic Press, London, 2002, pp. 645–699.
- Lundberg U., Vinatzer U., Berdnik D., von Gabain A., Baccarini M., Growth phase-regulated induction of Salmonella-induced macrophages apoptosis correlates with transient expression of SPI-1 genes, J. Bacteriol. (1999) 181:3433–3437 [PubMed].
- Marcus S.L., Brumell J.H., Pfeifer C.G., Finlay, B., Salmonella pathogenicity islands: big virulence in small packages, Microbes Infect. (2000) 2:145–156 [CrossRef] [PubMed].
- Monack D.M., Raupach B., Hromockyi A.E., Falkow S., Salmonella Typhimurium invasion induces apoptosis in infected macrophages, Proc. Natl. Acad. Sci. USA (1996) 93:9833–9838 [CrossRef] [PubMed].
- Pestka J.J., Zhou H.R., Moon Y., Chung Y.J., Cellular and molecular mechanism for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox, Toxicol. Lett. (2004) 153:61–73 [CrossRef] [PubMed].
- Pestka J.J., Mechanisms of deoxynivalenolinduced gene expression and apoptosis, Food Addit. Contam. (2008) 24:1–13.
- Pinton P., Accensi F., Beauchamp E., Cossalter A.-M., Callu P., Grosjean F., Oswald I.P., Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune response, Toxicol. Lett. (2008) 177:215–222 [CrossRef] [PubMed].
- Procyk K.J., Kovarik P., Von Gabain A., Baccarini M., Salmonella Typhimurium and lipopolysaccharide stimulate extracellularly regulated kinase activation in macrophages by a mechanism involving phosphatidylinositol 3-kinase and phospholipase D as novel intermediates, Infect. Immun. (1999) 67:1011–1017 [PubMed].
- Rotter B.A., Prelusky D.B., Toxicology of deoxynivalenol, J. Toxicol. Environ. Health (1996) 48:1–34 [CrossRef] [PubMed].
- Sergent T., Parys M., Garsou S., Pussemier L., Schneider Y.-J., Larondelle Y., Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations, Toxicol. Lett. (2006) 164:167–176 [CrossRef] [PubMed].
- Stoev S.D., Goundasheva D., Mirtcheva T., Mantle P.G., Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis, Exp. Toxicol. Pathol. (2000) 52:287–296 [PubMed].
- Tai J.H., Pestka J.J., Impaired murine resistance to Salmonella Typhimurium following oral exposure to the trichothecene T-2 toxin, Food Chem. Toxicol. (1988) 26:691–698 [CrossRef] [PubMed].
- Trenholm H.L., Prelusky D.B., Young J.C., Miller J.D., Reducing mycotoxins in animals feeds, Agriculture Canada Publication 1827E. Communications Branch, Agriculture Canada, Ottawa, 1988.
- Valdivia R.H., Falkow S., Bacterial genetics by flow cytometry: rapid isolation of Salmonella Typhimurium acid-inducible promoters by differential fluorescence induction, Mol. Microbiol. (1996) 22:367–378 [CrossRef] [PubMed].
- Van Immerseel F., De Buck J., Boyen F., Bohez L., Pasmans F., Sevcik M., et al., Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enteric serovar Enteritidis, Appl. Environ. Microbiol. (2004) 70:3582–3587 [CrossRef] [PubMed].
- Yang H., Chung D.H., Kim Y.B., Choi Y.H., Moon Y., Ribotoxic mycotoxin deoxynivalenol induced G2/3 cell cycle arrest via p21 mRNA stabilization in human epithelial cells, Toxicology (2008) 243:145–154 [CrossRef] [PubMed].
- Zhou H.R., Lau A.S., Pestka J.J., Role of double stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response, Toxicol. Sci. (2003) 74:335–344 [CrossRef] [PubMed].
- Zhou H.R., Jia Q., Pestka J.J., Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck, Toxicol. Sci. (2005) 85:916–926 [CrossRef] [PubMed].