Free Access
Review
Issue |
Vet. Res.
Volume 40, Number 3, May-June 2009
|
|
---|---|---|
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/vetres/2009005 | |
Published online | 18 February 2009 | |
How to cite this article | Vet. Res. (2009) 40:22 |
References of
Vet. Res. (2009) 40:22
- Aagaard C., Govaerts M., Meikle V., Vallecillo A.J., Gutiérrez-Pabello J.A., Suárez-Guüemez F., et al., Optimizing antigen cocktails for detection of Mycobacterium bovis in herds with different prevalences of bovine tuberculosis ESAT6-CFP10 mixture shows optimal sensitivity and specificity, J. Clin. Microbiol. (2006) 44:4326–4335 [CrossRef] [PubMed].
- Abebe F., Holm-Hansen C.,Wiker H.G., Bjune G., Progress in serodiagnosis of Mycobacterium tuberculosis infection, Scand. J. Immunol. (2007) 66:176–191 [CrossRef] [PubMed].
- Ahmad Z., Sharma S., Khuller G.K., Azole antifungals as novel chemotherapeutic agents against murine tuberculosis, FEMS Microbiol. Lett. (2006) 261:181–186 [CrossRef] [PubMed].
- Ameni G., Tibbo M., Kinetics of interferongamma (IFN-gamma) release in the peripheral blood of calves vaccinated with BCG, J. Immunoassay Immunochem. (2002) 23:245–253 [CrossRef] [PubMed].
- Andersen P., Munk M.E., Pollock J.M., Doherty T.M., Specific immune-based diagnosis of tuberculosis, Lancet (2000) 356:1099–1104 [CrossRef] [PubMed].
- Andersen P., Doherty T.M., Madhukar P., Weldhing K., The prognosis of latent tuberculosis: can disease be predicted?, Trends Mol. Med. (2007) 13:175–182 [CrossRef] [PubMed].
- Andersen P., Vaccine strategies against latent tuberculosis infection, Trends Microbiol. (2007) 15:7–13 [CrossRef] [PubMed].
- Arriaga A.K., Orozco E.H., Aguilar L.D., Rook G.A.W., Hernández-Pando R., Immunological and pathological comparative analysis between experimental latent tuberculous infection and progressive pulmonary tuberculosis, Clin. Exp. Immunol. (2002) 128:229–237 [CrossRef] [PubMed].
- Bhatt A., Fujiwara N., Bhatt K., Gurcha S.S., Kremer L., Chen B., et al., Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice, Proc. Natl. Acad. Sci. USA (2007) 104:5157–5162 [CrossRef] [PubMed].
- Boon C., Dick T., Mycobacterium bovis BCG response regulator essential for hypoxic dormancy, J. Bacteriol. (2002) 184:6760–6767 [CrossRef] [PubMed].
- Buddle B.M., de Lisle G.W., Pfeffer A., Aldwell F.E., Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG, Vaccine (1995) 13:1123–1130 [CrossRef] [PubMed].
- Buddle B.M., Skinner M.A., Wedlock D.N., de Lisle G.W., Vordermeier H.M., Hewinson R.G., Cattle as a model for development of vaccines against human tuberculosis, Tuberculosis (2005) 85:19–24 [CrossRef].
- Cassidy J.P., Bryson D.G., Cancela M.M.G., Forster F., Pollock J.M., Neill S.D., Lymphocyte subtypes in experimentally induced early-stage bovine tuberculous lesions, J. Comp. Pathol. (2001) 124:46–51 [CrossRef] [PubMed].
- Cassidy J.P., The pathogenesis and pathology of bovine tuberculosis with insights from studies of tuberculosis in humans and laboratory animal models, Vet. Microbiol. (2006) 112:151–161 [CrossRef] [PubMed].
- Cehovin A., Cliff J.M., Hill P.C., Brookes R.H., Dockrell H.M., Extended culture enhances sensitivity of a gamma interferon assay for latent Mycobacterium tuberculosis infection, Clin. Vaccine Immunol. (2007) 14:796–798 [CrossRef] [PubMed].
- Chen Y., Chao Y., Deng Q., Liu T., Xiang J., Chen J., et al., Potential challenges to the Stop TB Plan for humans in China; cattle maintain M. bovis and M. tuberculosis, Tuberculosis (2009) 89:95–100.
- Cho S.N., Current issues on molecular and immunological diagnosis of tuberculosis, Yonsei Med. J. (2007) 48:347–359 [CrossRef] [PubMed].
- Converse P.J., Karakousis P.C., Klinkenberg L.G., Kesavan A.K., Ly L.H., Allen S.S., et al., The role of the dosR/dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models, Infect. Immun. (2008) doi:10.1128/IAI.01117-08.
- Corner L.A., Post mortem diagnosis of Mycobacterium bovis infection in cattle, Vet. Microbiol. (1994) 40:53–63 [CrossRef] [PubMed].
- Cosivi O., Grange J.M., Daborn C.J., Raviglione M.C., Fujikura T., Cousins D., et al., Zoonotic tuberculosis due to Mycobacterium bovis in developing countries, Emerg. Infect. Dis. (1998) 4:59–70 [PubMed].
- Costello E., Doherty M.L., Monaghan M.L., Quigley F.C., O'Reilly P.F., A study of cattle to cattle transmission of M. bovis, Vet. J. (1998) 155:245–250 [CrossRef] [PubMed].
- Cotter T.P., Sheehan S., Cryan B., O'Shaughnessy E., Cummins H., Bredin C.P., Tuberculosis due to Mycobacterium bovis in humans in the south-west region of Ireland: is there a relationship with infection prevalence in cattle?, Tuber. Lung Dis. (1996) 77:545–548 [CrossRef] [PubMed].
- Dannenberg A.M., Immune mechanisms in the pathogenesis of pulmonary tuberculosis, Rev. Infect. Dis. (1989) 11:S369–S378 [PubMed].
- De Kantor I.N., Roswurm J.D., Mycobacteria isolated from nasal secretions of tuberculin test reactor cattle, Am. J. Vet. Res. (1978) 39:1233–1234 [PubMed].
- De Kantor I.N., Ritacco V., An update on bovine tuberculosis programmes in Latin American and Caribbean countries, Vet. Microbiol. (2006) 112:111–118 [CrossRef] [PubMed].
- De la Rua-Domenech R., Goodchild A.T.,
Vordermeier H.M., Hewinson R.G., Christiansen
K.H., Clifton-Hadley R.S., Ante mortem diagnosis of
tuberculosis in cattle: A review of the tuberculin tests,
-interferon assay and other ancillary diagnostic techniques, Res. Vet. Sci. (2006) 81:190–210 [CrossRef] [PubMed].
- Dean G.S., Rhodes S.G., Coad M., Whelan A.O., Cockle P.J., Clifford D.J., et al., Minimum infective dose of Mycobacterium bovis in cattle, Infect. Immun. (2005) 73:6467–6471 [CrossRef] [PubMed].
- Delogu G., Sanguinetti M., Posteraro B., Rocca S., Zanetti S., Fadda G., The hbhA gene of Mycobacterium tuberculosis is specifically upregulated in the lungs but not in the spleens of aerogenically infected mice, Infect. Immun. (2006) 74:3006–3011 [CrossRef] [PubMed].
- Demangel C., Garnier T., Rosenkrands I., Cole S.T., Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens, Infect. Immun. (2005) 73:2190–2196 [CrossRef] [PubMed].
- Demissie A., Leyten E.M.S., Abebe M., Wassie L., Aseffa A., Abate G., et al., Recognition of stagespecific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis, Clin. Vaccine Immunol. (2006) 13:179–186 [CrossRef] [PubMed].
- Denis M., Wedlock D.N., McCarthy A.R., Parlane N.A., Cockle P.J., Vordermeier H.M., et al., Enhancement of the sensitivity of the whole-blood gamma interferon assay for diagnosis of Mycobacterium bovis infections in cattle, Clin. Vaccine Immunol. (2007) 14:1483–1489 [CrossRef] [PubMed].
- Doherty M.L., Bassett H.F., Quinn P.J., Davis W.C., Monaghan M.L., Effects of dexamethasone on cell-mediated immune responses in cattle sensitized to Mycobacterium bovis, Am. J. Vet. Res. (1995) 56:1300–1306 [PubMed].
- Florczyk M.A., McCue L.A., Stack R.F., Hauer C.R., McDonough K.A., Identification and characterization of mycobacterial proteins differentially expressed under standing and shaking culture conditions, including Rv2623 from a novel class of putative ATP-binding proteins, Infect. Immun. (2001) 69:5777–5785 [CrossRef] [PubMed].
- Garnier T., Eiglmeier K., Camus J.C., Medina N., Mansoor H., Pryor M., et al., The complete genome sequence of Mycobacterium bovis, Proc. Natl. Acad. Sci. USA (2003) 100:7877–7882 [CrossRef] [PubMed].
- Geluk A., Lin M.Y., van Meijgaarden K.E., Leyten E.M., Franken K.L., Ottenhoff T.H., Klein M.R., T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination, Infect. Immun. (2007) 75:2914–2921 [CrossRef] [PubMed].
- Golby P., Hatch K.A., Bacon J., Cooney R., Riley P., Allnutt J., et al., Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex, Microbiology (2007) 153:3323–3336 [CrossRef] [PubMed].
- Gonzalo-Asensio J., Mostowy S., Harders-Westerveen J., Huygen K., Hernández-Pando R., Thole J., et al., PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence, PLoS ONE (2008) 3:e349.
- Goodchild A.V., Clifton-Hadley R.S., Cattle-tocattle transmission of Mycobacterium bovis, Tuberculosis (2001) 81:23–41 [CrossRef].
- Grange J.M., Mycobacterium bovis infection in human beings, Tuberculosis (2001) 81:71–77 [CrossRef].
- Grasser A., Grasser R., The calibration, control and use of a diluted bovine tuberculin (PPD) for testing cattle in areas free from tuberculosis, Dev. Biol. Stand. (1986) 58:683–687 [PubMed].
- Haagsma J., Potency testing of bovine tuberculins, Dev. Biol. Stand. (1986) 58:689–694 [PubMed].
- Hancox M., Latency and the control of bovine TB in man and other animals, Resp. Med. (2003) 97:1075–1077 [CrossRef].
- Hernández-Pando R., Jeyanathan M., Mengistu G., Aguilar D., Orozco H., Harboe M., et al., Persistence of DNA from M. tuberculosis in superficially normal lung tissue during latent infection, Lancet (2000) 356:2133–2138 [CrossRef] [PubMed].
- Hewinson R.G., Vordermeier H.M., Buddle B.M., Use of the bovine model of tuberculosis for the development of improved vaccines and diagnostics, Tuberculosis (2003) 83:119–130 [CrossRef].
- Hlavsa M.C., Moonan P.K., Cowan L.S., Navin T.R., Kammerer J.S., Morlock G.P., et al., Human tuberculosis due to Mycobacterium bovis in the United States, 1995–2005, Clin. Infect. Dis. (2008) 47:168–175 [CrossRef] [PubMed].
- Honaker R.W., Stewart A., Schittone S., Izzo A., Klein M.R., Voskuil M.I., BCG vaccine strains lack nark2 and narX induction and exhibit altered phenotypes during dormancy, Infect. Immun. (2008) 76:2587–2593 [CrossRef] [PubMed].
- Hope J.C., Thom M.L., Villarreal-Ramos B., Vordermeier H.M., Hewinson R.G., Howard C.J., Exposure to Mycobacterium avium induces low-level protection from Mycobacterium bovis infection but compromises diagnosis of disease in cattle, Clin. Exp. Immunol. (2005) 141:432–439 [CrossRef] [PubMed].
- Hougardy J.M., Schepers K., Place S., Drowart
A., Lechevin V., Verscheure V., et al., Heparinbinding-hemagglutinin-induced
IFN-
release as a diagnostic tool for latent tuberculosis, PLoS ONE (2007) 2:e926.
- Kennedy H.E., Welsh M.D., Bryson D.G., Cassidy J.P., Forster F.I., Howard C.J., et al., Modulation of immune responses to Mycobacterium bovis in cattle depleted of WC1(+) gamma-delta T cells, Infect. Immun. (2002) 70:1488–1500 [CrossRef] [PubMed].
- Kennedy H.E., Welsh M.D., Cassidy J.P., Bryson D.G., Forster F., McNair J., et al., The role of WC1(+) gamma-delta T-cells in the delayed-type hypersensitivity (DTH) skin-test reaction of Mycobacterium bovis-infected cattle, Vet. Immunol. Immunopathol. (2003) 20:169–176 [CrossRef].
- Kesavan A.K., Brooks M., Tufariello J., Chan J., Manabe Y.C., Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model, Tuberculosis (2009) 89:17–21 [CrossRef].
- Kumar A., Toledo J.C., Patel R.P., Lancaster J.R. Jr., Steyn A.J., Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor, Proc. Natl. Acad. Sci. USA (2007) 104:11568–11573 [CrossRef] [PubMed].
- Lalvani A., Nagvenkar P., Udwadia Z., Pathan A.A., Wilkinson K.A., Shastri J.S., et al., Enumeration of T cell specific for RD1-encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians, J. Infect. Dis. (2001) 183:469–477 [CrossRef] [PubMed].
- Larsen M.V., Sorensen I.J., Thomsen V.O., Ravn P., Re-activation of bovine tuberculosis in a patient treated with infliximab, Eur. Respir. J. (2008) 32:229–231 [CrossRef] [PubMed].
- Lepper A.W., Pearson C.W., Corner L.A., Anergy to tuberculin in beef cattle, Aust. Vet. J. (1977) 53:214–216 [CrossRef] [PubMed].
- Leyten E.M.S., Young-Lin M., Franken K.L.M.C., Friggen A.H., Prins C., van Meijgaarden K.E., et al., Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis, Microbes Infect. (2006) 8:2052–2060 [CrossRef] [PubMed].
- Liebana E., Johnson L., Gough J., Durr P., Jahans K., Clifton-Hadley R., et al., Pathology of naturally occurring bovine tuberculosis in England and Wales, Vet. J. (2008) 176:354–360 [CrossRef] [PubMed].
- Lim A., Eleuterio M., Hutter B., Murugasu-Oei B., Dick T., Oxygen depletion-induced dormancy in Mycobacterium bovis BCG, J. Bacteriol. (1999) 181:2252–2256 [PubMed].
- Lin M.Y., Geluk A., Smith S.G., Stewart A.L., Friggen A.H., Franken K.L., et al., Lack of immune responses to Mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination, Infect. Immun. (2007) 75:3523–3530 [CrossRef] [PubMed].
- Locht C., Rouanet C., Hougardy J.M., Mascart F., How a different look at latency con help to develop novel diagnostics and vaccines against tuberculosis, Exp. Opin. Biol. Ther. (2007) 7:1–13 [CrossRef].
- Lyashchenko K., Whelan A.O., Greenwald R., Pollock J.M., Andersen P., Hewinson R.G., Vordermeier H.M., Association of tuberculin-boosted antibody responses with pathology and cell-mediated immunity in cattle vaccinated with Mycobacterium bovis BCG and infected with M. bovis, Infect. Immun. (2004) 72:2462–2467 [CrossRef] [PubMed].
- Malhotra V., Sharma D., Ramanathan V.D., Shakila H., Saini D.K., Chakravorty S., et al., Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis, FEMS Microbiol. Lett. (2004) 231:237–245 [CrossRef] [PubMed].
- Mallard B.A., Dekkers J.C., Ireland M.J., Leslie K.E., Sharif S., Vankampen C.L., et al., Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health, J. Dairy Sci. (1998) 81:585–595 [PubMed].
- Marks G.B., Bai J., Simpson S.E., Sullivan E.A., Stewart G.J., Incidence of tuberculosis among a cohort of tuberculin-positive refugees in Australia: reappraising the estimates of risk, Am. J. Respir. Crit. Care Med. (2000) 162:1851–1854 [PubMed].
- McIlroy S.G., Neill S.D., McCracken R.M., Pulmonary lesions and Mycobacterium bovis excretion from the respiratory tract of tuberculin reacting cattle, Vet. Rec. (1986) 118:718–721 [PubMed].
- Meade K.G., Gormley E., Doyle M.B., Fitzsimons T., O'Farrelly C., Costello E., et al., Innate gene repression associated with Mycobacterium bovis infection in cattle: toward a gene signature of disease, BMC Genomics (2007) 8:400 [CrossRef] [PubMed].
- Menzies F.D., Neill S.D., Cattle-to-cattle transmission of bovine tuberculosis, Vet. J. (2000) 160:92–106 [CrossRef] [PubMed].
- Neill S.D., Hanna J., O'Brien J.J., McCracken R.M., Transmission of tuberculosis from experimentally infected cattle to in-contact calves, Vet. Rec. (1989) 124:269–271 [PubMed].
- Neill S.D., Hanna J., Mackie D.P., Bryson T.G., Isolation of Mycobacterium bovis from the respiratory tracts of skin test-negative cattle, Vet. Rec. (1992) 131:45–47 [PubMed].
- Neill S.D., Cassidy J., Hanna J., Mackie D.P., Pollock J.M., Clements A., et al., Detection of Mycobacterium bovis in skin negative cattle with an assay for interferon-gamma, Vet. Rec. (1994) 135:134–135 [PubMed].
- Neill S.D., Bryson D.G., Pollock J.M., Pathogenesis of tuberculosis in cattle, Tuberculosis (2001) 81:79–86 [CrossRef].
- Neyrolles O., Hernández-Pando R., Pietri-Rouxel F., Fornes P., Tailleux L., Barrios-Payán J.A., et al., Is adipose tissue a place for Mycobacterium tuberculosis persistence?, PLoS ONE (2006) 1:e43.
- O'Reilly L.M., Daborn C.J., The epidemiology of Mycobacterium bovis infections in animals and man: a review, Tuber. Lung Dis. (1995) 76:1–46 [CrossRef].
- Ouellet H., Ouellet Y., Richard C., Labarre M., Wittenberg B., Wittenberg J., Guertin M., Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide, Proc. Natl. Acad. Sci. USA (2002) 99:5902–5907 [CrossRef] [PubMed].
- Palmer M.V., Waters W.R., Advances in bovine tuberculosis diagnosis and pathogenesis: What policy makers need to know, Vet. Microbiol. (2006) 112:181–190 [CrossRef] [PubMed].
- Palmer M.V., Waters W.R., Thacker T.C., Lesion development and immunohistochemical changes in granulomas from cattle experimentally infected with Mycobacterium bovis, Vet. Pathol. (2007) 44:863–874 [CrossRef] [PubMed].
- Pang X., Vu P., Byrd T.F., Ghanny S., Soteropoulos P., Mukamolova G.V., et al., Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis, Microbiology (2007) 153:1229–1242 [CrossRef] [PubMed].
- Parish T., Smith D.A., Kendall S., Casali N., Bancroft G.J., Stoker N.G., Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis, Infect. Immun. (2003) 71:1134–1140 [CrossRef] [PubMed].
- Park H.D., Guinn K.M., Harrell M.I., Liao R., Voskuil M.I., Tompa M., et al., Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis, Mol. Microbiol. (2003) 48:833–843 [CrossRef] [PubMed].
- Parrish N.M., Dick J.D., Bishai W.R., Mechanisms of latency in Mycobacterium tuberculosis, Trends Microbiol. (1998) 6:107–112 [CrossRef] [PubMed].
- Pethe K., Alonso S., Biet F., The heparin-binding hemagglutinin of M. tuberculosis is required for extrapulmonary dissemination, Nature (2001) 412:190–194 [CrossRef] [PubMed].
- Piccinini R., Luzzago C., Frigerio M., Dapra V., Liandris E., Zecconi A., Comparison of blood nonspecific immune parameters in Bovine virus diarrhoea virus (BVDV) persistently infected and in immune heifers, J. Vet. Med. B Infect. Dis. Vet. Public Health (2006) 53:62–77 [PubMed].
- Pollock J.M., Girvin R.M., Lightbody K.A., Clements R.A., Neill S.D., Buddle B.M., Andersen P., Assessment of defined antigens for the diagnosis of bovine tuberculosis in skin test-reactor cattle, Vet. Rec. (2000) 146:659–665 [PubMed].
- Pollock J.M., Neill S.D., Mycobacterium bovis infection and tuberculosis in cattle, Vet. J. (2002) 163:115–127 [CrossRef] [PubMed].
- Pollock J.M., Welsh M.D., McNair J., Immune responses in bovine tuberculosis: Towards new strategies for the diagnosis and control of disease, Vet. Immunol. Immunopathol. (2005) 108:37–43 [CrossRef] [PubMed].
- Pollock J.M., Rodgers J.D., Welsh M.D., McNair J., Pathogenesis of bovine tuberculosis: The role of experimental models of infection, Vet. Microbiol. (2006) 120:141–150 [CrossRef].
- Qureshi T., Templeton J.W., Adams L.G., Intracellular survival of Brucella abortus, Mycobacterium bovis BCG, Salmonella dublin and Salmonella typhimurium in macrophages from cattle genetically resistant to Brucella abortus, Vet. Immunol. Immunopathol. (1995) 50:55–66 [CrossRef].
- Rehren G., Walters S., Fontan P., Smith I., Zárraga A.M., Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis, Tuberculosis (2007) 87:347–359 [CrossRef].
- Rhodes S.G., Palmer N., Graham S.P., Bianco A.E., Hewinson R.G., Vordermeier H.M., Distinct response kinetics of gamma interferon and interleukin-4 in bovine tuberculosis, Infect. Immun. (2000) 68:5393–5400 [CrossRef] [PubMed].
- Rhodes S.G., Sawyer J., Whelan A.O., Dean G.S., Coad M., Ewer K.J., et al., Is interleukin-4d3 splice variant expression in bovine tuberculosis a marker of protective immunity?, Infect. Immun. (2007) 75:3006–3013 [CrossRef] [PubMed].
- Roberts D.M., Liao R.P., Wisedchaisri G., Hol W.G., Sherman D.R., Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis, J. Biol. Chem. (2004) 279:23082–23087 [CrossRef] [PubMed].
- Rodriguez J.G., Burnano C.S., Nuñez C., González C.E., Zambrano M.M., Garcá M.J., Del Portillo P., Rv3134c/devR/devS operon of Mycobacterium bovis BCG is differentially transcribed under “in vitro” stress conditions, Tuberculosis (2008) 88: 273–282.
- Rodwell T.C., Moore M., Moser K.S., Brodine S.K., Strathdee S.A., Tuberculosis from Mycobacterium bovis in binational communities, United States, Emerg. Infect. Dis. (2008) 14:909–916 [CrossRef] [PubMed].
- Rohde K.H., Abramovitch R.B., Russell D.G., Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues, Cell Host Microbe (2007) 2:352–364 [CrossRef] [PubMed].
- Romero R.E., Garzón D.L., Mejá G.A., Monroy W., Patarroyo M.E., Murillo L.A., Identification of Mycobacterium bovis in bovine clinical samples by PCR-species specific primers, Can. J. Vet. Res. (1999) 63:101–106 [PubMed].
- Roupie V., Romano M., Zhang L., Korf H., Young-Lin M., Franken K.L.M.C., et al., Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice, Infect. Immun. (2007) 75:941–949 [CrossRef] [PubMed].
- Rustad T.R., Harrell M.I., Liao R., Sherman D.R., The enduring hypoxic response of Mycobacterium tuberculosis, PLoS ONE (2008) 3:e1502.
- Sardiwal S., Kendall S.L., Movahedzadeh F., Rison S.C., Stoker N.G., Djordjevic S., A GAF domain in the hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem, J. Mol. Biol. (2005) 353:929–936 [PubMed].
- Saunders B.M., Britton W.J., Life and death in the granuloma: immunopathology of tuberculosis, Immunol. Cell Biol. (2007) 85:103–111 [CrossRef] [PubMed].
- Saxena A., Srivastava V., Srivastava R., Srivastava B.S., Identification of genes of Mycobacterium tuberculosis upregulated during anaerobic persistence by fluorescence and kanamycin resistance selection, Tuberculosis (2008) 88:518–525 [CrossRef].
- Schnappinger D., Schoolnick G.K., Ehrt S., Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another, Microbes Infect. (2006) 8:1132–1140 [CrossRef] [PubMed].
- Shafer-Weaver K.A., Sordillo L.M., Bovine CD8+ suppressor lymphocytes alter immune responsiveness during the postpartum period, Vet. Immunol. Immunopathol. (1997) 56:53–64 [CrossRef] [PubMed].
- Sherman D.R., Voskuil M., Schnappinger D., Liao R., Harrell M.I., Schoolnik G.K., Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin, Proc. Natl. Acad. Sci. USA (2001) 98:7534–7539 [CrossRef] [PubMed].
- Shi L., Jung Y.J., Tyagi S., Gennaro M.L., North R.J., Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence, Proc. Natl. Acad. Sci. USA (2003) 100:241–246 [CrossRef] [PubMed].
- Srivastava K., Chauhan D.S., Gupta P., Singh H.B., Sharma V.D., Yadav V.S., et al., Isolation of Mycobacterium bovis and M. tuberculosis from cattle of some farms in north India – Possible relevance in human health, Indian J. Med. Res. (2008) 128:26–31 [PubMed].
- Thacker T.C., Palmer M.V., Waters W.R., Associations between cytokine gene expression and pathology in Mycobacterium bovis infected cattle, Vet. Immunol. Immunopathol. (2007) 119:204–213 [CrossRef] [PubMed].
- Thom M., Howard C., Villarreal-Ramos B., Mead E., Vordermeier M., Hope J., Consequence of prior exposure to environmental mycobacteria on BCG vaccination and diagnosis of tuberculosis infection, Tuberculosis (2008) 88:324–334 [CrossRef].
- Une Y., Mori T., Tuberculosis as a zoonosis from a veterinary perspective, Comp. Immunol. Microbiol. Infect. Dis. (2007) 30:415–425 [CrossRef] [PubMed].
- Van Rhijn I., Godfroid J., Michel A., Rutten V., Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models, Microbes Infect. (2008) 10:710–715.
- Villarreal-Ramos B., McAulay M., Chance V., Martin M., Morgan J., Howard C.J., Investigation of the role of CD8+ T cells in bovine tuberculosis in vivo, Infect. Immun. (2003) 71:4297–4303 [CrossRef] [PubMed].
- Vitale F., Capra G., Maxia L., Reale S., Vesco G., Caracappa S., Detection of Mycobacterium tuberculosis complex in cattle by PCR using milk, lymph node aspirates, and nasal swabs, J. Clin. Microbiol. (1998) 36:1050–1055 [PubMed].
- Vordermeier H.M., Cockle P.C., Whelan A., Rhodes S., Palmer N., Bakker D., Hewinson R.G., Development of diagnostic reagents to differentiate between Mycobacterium bovis BCG vaccination and M. bovis infection in cattle, Clin. Diagn. Lab. Immunol. (1999) 6:675–682 [PubMed].
- Vordermeier H.M., Chambers M.A., Cockle P.J., Whelan A.O., Simmons J., Hewinson R.G., Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis, Infect. Immun. (2002) 70: 3026–3032.
- Voskuil M.I., Schnappinger D., Visconti K.C., Harrel M.I., Dolganov G.N., Sherman D.R., Schoolnik G.K., Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program, J. Exp. Med. (2003) 198:705–713 [CrossRef] [PubMed].
- Walters S.B., Dubnau E., Kolesnikova I., Laval F., Daffe M., Smith I., The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis, Mol. Microbiol. (2006) 60:312–330 [CrossRef] [PubMed].
- Waters W.R., Palmer M.V., Thacker T.C., Bannantine J.P., Vordermeier H.M., Hewinson R.G., et al., Early antibody responses to experimental Mycobacterium bovis infection in cattle, Clin. Vaccine Immunol. (2006) 13:648–654 [CrossRef] [PubMed].
- Wedlock D.N., Aldwell F.E., Collins D.M., de Lisle G.W., Wilson T., Buddle B.M., Immune responses induced in cattle by virulent and attenuated Mycobacterium bovis strains: correlation of delayedtype hypersensitivity with ability of strains to grow in macrophages, Infect. Immun. (1999) 67:2172–2177 [PubMed].
- Whipple D.L., Bolin C.A., Miller J.M., Distribution of lesions in cattle infected with Mycobacterium bovis, J. Vet. Diagn. Invest. (1996) 8:351–354 [PubMed].
- Wilkinson R.J., Wilkinson K.A., De Smet K.A., Haslov K., Pasvol G., Singh M., et al., Human T- and B-cell reactivity to the 16 kDa alpha-crystallin protein of Mycobacterium tuberculosis, Scand. J. Immunol. (1998) 48:403–409 [CrossRef] [PubMed].
- Wood P.R., Jones S.L., BOVIGAM: an in vitro cellular diagnostic test for bovine tuberculosis, Tuberculosis (2001) 81:147–155 [CrossRef].
- Young S.L., Slobbe L., Wilson R., Buddle B.M., de Lisle G.W., Buchan G.S., Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination, Infect. Immun. (2007) 75:2833–2840 [CrossRef] [PubMed].
- Yuan Y., Crane D.D., Simpson R.M., Zhu Y.Q.,
Hickey M.J., Sherman D.R., Barry C.E., The 16 kDa
-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages, Proc. Natl. Acad. Sci. USA (1998) 95:9578–9583 [CrossRef] [PubMed].