Free Access
Vet. Res.
Volume 40, Number 2, March-April 2009
Adaptative strategies of vector-borne pathogens to vectorial transmission
Number of page(s) 10
Published online 21 April 2009
How to cite this article Vet. Res. (2009) 40:38
References of  Vet. Res. (2009) 40:38
  1. Adler S., Theodor O., The mouthparts, alimentary tract and salivary apparatus of the female in Phlebotomus papatasi, Ann. Trop. Med. Parasitol. (1926) 21:109–142.
  2. Antoine J.C., Prina E., Courret N., Lang T., Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts, Adv. Parasitol. (2004) 58:1–68 [CrossRef] [PubMed].
  3. Antoniou M., Haralambous C., Mazeris A., Pratlong F., Dedet J.P., Soteriadou K., Leishmania donovani leishmaniasis in Cyprus, Lancet Infect. Dis. (2008) 8:6–7 [CrossRef] [PubMed].
  4. Arrivillaga J.C., Norris D.E., Feliciangeli M.D., Lanzaro G.C., Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences, Infect. Genet. Evol. (2002) 2:83–95 [CrossRef] [PubMed].
  5. Ashford R.W., The leishmaniases as emerging and reemerging zoonoses, Int. J. Parasitol. (2000) 30:1269–1281 [CrossRef] [PubMed].
  6. Baldwin T., Sakthianandeswaren A., Curtis J.M., Kumar B., Smyth G.K., Foote S.J., Handman E., Wound healing response is a major contributor to the severity of cutaneous leishmaniasis in the ear model of infection, Parasite Immunol. (2007) 29:501–513 [CrossRef] [PubMed].
  7. Bates P.A., Rogers M.E., New insights into the developmental biology and transmission mechanisms of Leishmania, Curr. Mol. Med. (2004) 4:601–609 [CrossRef] [PubMed].
  8. Bates P.A., Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies, Int. J. Parasitol. (2007) 37:1097–1106 [CrossRef] [PubMed].
  9. Bates P.A., Leishmania sand fly interaction: progress and challenges, Curr. Opin. Microbiol. (2008) 11:340–344 [CrossRef] [PubMed].
  10. Beach R., Kiilu G., Leeuwenburg J., Modification of sand fly biting behavior by Leishmania leads to increased parasite transmission, Am. J. Trop. Med. Hyg. (1985) 34:278–282 [PubMed].
  11. Belkaid Y., Valenzuela J.G., Kamhawi S., Rowton E., Sacks D.L., Ribeiro J.M., Delayed-type hypersensitivity to Phlebotomus papatasi sand fly bite: an adaptive response induced by the fly? Proc. Natl. Acad. Sci. USA (2000) 97:6704–6709.
  12. Belkaid Y., Mendez S., Lira R., Kadambi N., Milon G., Sacks D., A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity, J. Immunol. (2000) 165:969–977 [PubMed].
  13. Belkaid Y., Piccirillo C.A., Mendez S., Shevach E.M., Sacks D.L., CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity, Nature (2002) 420:502–507 [CrossRef] [PubMed].
  14. Belkaid Y., Blank R.B., Suffia I., Natural regulatory T cells and parasites: a common quest for host homeostasis, Immunol. Rev. (2006) 212:287–300 [CrossRef] [PubMed].
  15. Bogdan C., Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example, Cell. Microbiol. (2008) 10:1134–1221.
  16. Bray D.P., Hamilton J.G., Host odor synergizes attraction of virgin female Lutzomyia longipalpis (Diptera: Psychodidae), J. Med. Entomol. (2007) 44:779–787 [CrossRef] [PubMed].
  17. Dedet J.P., Pradinaud R., Gay F., Epidemiological aspects of human cutaneous leishmaniasis in French Guiana, Trans. R. Soc. Trop. Med. Hyg. (1989) 83:616–620 [CrossRef] [PubMed].
  18. Desjeux P., Leishmaniasis: current situation and new perspectives, Comp. Immunol. Microbiol. Infect. Dis. (2004) 27:305–318 [CrossRef] [PubMed].
  19. Dillon R.J., Ivens A.C., Churcher C., Holroyd N., Quail M.A., Rogers M.E., et al., Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship, Genomics (2006) 88:831–840 [CrossRef] [PubMed].
  20. Dujardin J.C., Campino L., Cañavate C., Dedet J.P., Gradoni L., Soteriadou K., et al., Spread of vector-borne diseases and neglect of Leishmaniasis, Europe, Emerg. Infect. Dis. (2008) 14:1013–1018 [CrossRef] [PubMed].
  21. Feliciangeli M.D., Delgado O., Suarez B., Bravo A., Leishmania and sand flies: proximity to woodland as a risk factor for infection in a rural focus of visceral leishmaniasis in west central Venezuela, Trop. Med. Int. Health (2006) 11:1785–1791 [CrossRef] [PubMed].
  22. Fichet-Calvet E., Jomâa I., Ben Ismail R., Ashford R.W., Leishmania major infection in the fat sand rat Psammomys obesus in Tunisia: interaction of host and parasite populations, Ann. Trop. Med. Parasitol. (2003) 97:593–603 [CrossRef] [PubMed].
  23. Ginger M.L., Niche metabolism in parasitic protozoa, Philos. Trans. R. Soc. Lond. B Biol. Sci. (2006) 361:101–118 [CrossRef] [PubMed].
  24. Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., et al., The genome of the kinetoplastid parasite, Leishmania major, Science (2005) 309:342–436.
  25. Jochim R.C., Teixeira C.R., Laughinghouse A., Mu J., Oliveira F., Gomes R.B., et al., The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies, BMC Genomics (2008) 9:15 [CrossRef] [PubMed].
  26. Johnson L.A., Jackson D.G., Cell traffic and the lymphatic endothelium, Ann. N.Y. Acad. Sci. (2008) 1131:119–133 [CrossRef].
  27. Kamhawi S., The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections, Microbes Infect. (2000) 2:1765–1773 [CrossRef] [PubMed].
  28. Kamhawi S., Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. (2006) 22:439–445.
  29. Killick-Kendrick R., Leaney A.J., Ready P.D., Molyneux D.H., Leishmania in phlebotomid sandflies IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis, Proc. R. Soc. Lond. B Biol. Sci. (1977) 196:105–115 [CrossRef] [PubMed].
  30. Killick-Kendrick R., Biology of Leishmania in phlebotomine sandflies, in: Killick-Kendric R., Peters W. (Eds.), The Leishmaniases in Biology and Medicine, Academic Press, London, 1987, pp. 392–460.
  31. Killick-Kendrick R., The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host, Ann. Parasitol. Hum. Comp. (1990) 65:37–42 [PubMed].
  32. Killick-Kendrick R., Phlebotomine vectors of the leishmaniases: a review, Med. Vet. Entomol. (1990) 4:1–24 [CrossRef] [PubMed].
  33. Kimblin N., Peters N., Debrabant A., Secundino N., Egen J., Lawyer P., et al., Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies, Proc. Natl. Acad. Sci. USA (2008) 105:10125–10130 [CrossRef] [PubMed].
  34. Kupper T.S., Fuhlbrigge R.C., Immune surveillance in the skin: mechanisms and clinical consequences, Nat. Rev. Immunol. (2004) 4:211–222 [CrossRef] [PubMed].
  35. Lainson R., Ryan L., Shaw J.J., Infective stages of Leishmania in the sandfly vector and some observations on the mechanism of transmission, Mem. Inst. Oswaldo Cruz (1987) 82:421–424 [PubMed].
  36. Lainson R., Rangel E.F., Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review, Mem. Inst. Oswaldo Cruz (2005) 100:811–827 [PubMed].
  37. Milon G., Leishmania parasites: could we consider them as living organisms per se? Microbes Infect. (2008) 10:1077–1081.
  38. Murray H.W., Berman J.D., Davies C.R., Saravia N.G., Advances in leishmaniasis, Lancet (2005) 366:1561–1577 [CrossRef] [PubMed].
  39. Osorio y Fortéa J., Prina E., de La Llave E., Lecoeur H., Lang T., Milon G., Unveiling pathways used by Leishmania amazonensis amastigotes to subvert macrophage function, Immunol. Rev. (2007) 219:66–74 [CrossRef] [PubMed].
  40. Nicolas L., Sidjanski S., Colle J.H., Milon G., Leishmania major reaches distant cutaneous sites where it persists transiently while persisting durably in the primary dermal site and its draining lymph node: Leishmania developmental program Vet. Res. (2009) 40:38 a study with laboratory mice, Infect. Immun. (2000) 68:6561–6566 [CrossRef] [PubMed].
  41. Peacock C.S., Seeger K., Harris D., Murphy L., Ruiz J.C., Quail M.A., et al., Comparative genomic analysis of three Leishmania species that cause diverse human disease, Nat. Genet. (2007) 39:839–847 [CrossRef] [PubMed].
  42. Pearson T., Greiner D.L., Shultz L.D., Humanized SCID mouse models for biomedical research, Curr. Top. Microbiol. Immunol. (2008) 324:25–51 [PubMed].
  43. Peters N.C., Egen J.G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., et al., In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies, Science (2008) 321:970–974 [CrossRef] [PubMed].
  44. Ready P.D., Leishmania manipulates sandfly feeding to enhance its transmission, Trends Parasitol. (2008) 24:151–153 [CrossRef] [PubMed].
  45. Rogers M.E., Chance M.L., Bates P.A., The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis, Parasitology (2002) 124:495–507 [PubMed].
  46. Rogers M.E., Ilg T., Nikolaev A.V., Ferguson M.A., Bates P.A., Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG, Nature (2004) 430:463–467 [CrossRef] [PubMed].
  47. Rogers M.E., Bates P.A., Leishmania manipulation of sand fly feeding behavior results in enhanced transmission, PLoS Pathog. (2007) 3:e91.
  48. Rogers M.E., Hajmová M., Joshi M.B., Sadlova J., Dwyer D.M., Volf P., Bates P.A., Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice, Cell. Microbiol. (2008) 10:1363–1372 [CrossRef] [PubMed].
  49. Rotureau B., Gaborit P., Issaly J., Carinci R., Fouque F., Carme B., Diversity and ecology of sand flies (Diptera: Psychodidae: Phlebotominae) in coastal French Guiana, Am. J. Trop. Med. Hyg. (2006) 75:62–69 [PubMed].
  50. Sacks D.L., Metacyclogenesis in Leishmania promastigotes, Exp. Parasitol. (1989) 69:100–103 [CrossRef] [PubMed].
  51. Sacks D., Kamhawi S., Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis, Annu. Rev. Microbiol. (2001) 55:453–483 [CrossRef] [PubMed].
  52. Sacks D., Lawyer P., Kamhawi S., The biology of Leishmania-sandfly interactions, in: Myler P.J., Fasel N. (Eds.), Leishmania after the genome, Chapter 10, Caister Academic Press, 2007, pp. 205–238.
  53. Sant'Anna M.R., Alexander B., Bates P.A., Dillon R.J., Gene silencing in phlebotomine sand flies: xanthine dehydrogenase knock down by dsRNA microinjections, Insect. Biochem. Mol. Biol. (2008) 38:652–660 [CrossRef] [PubMed].
  54. Schlein Y., Jacobson R.L., Messer G., Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite, Proc. Natl. Acad. Sci. USA (1992) 89:9944–9948 [CrossRef] [PubMed].
  55. Schröder J.M., Reich K., Kabashima K., Liu F.T., Romani N., Metz M., et al., Who is really in control of skin immunity under physiological circumstances – lymphocytes, dendritic cells or keratinocytes? Exp. Dermatol. (2006) 11:913–929.
  56. Shortt H., Swaminath C., The method of feeding of Phlebotomus arpentipes with relation to its bearing on the transmission of kala azar, Indian J. Med. Res. (1928) 15:827–836.
  57. Smith D.F., Peacock C.S., Cruz A.K., Comparative genomics: from genotype to disease phenotype in the leishmaniases, Int. J. Parasitol. (2007) 37:1173–1186 [CrossRef] [PubMed].
  58. Stierhof Y.D., Bates P.A., Jacobson R.L., Rogers M.E., Schlein Y., Handman E., Ilg T., Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors, Eur. J. Cell Biol. (1999) 78:675–689 [PubMed].
  59. Svobodová M., Votýpka J., Experimental transmission of Leishmania tropica to hamsters and mice by the bite of Phlebotomus sergenti, Microbes Infect. (2003) 5:471–474 [CrossRef] [PubMed].
  60. Svobodová M., Volf P., Votýpka J., Experimental transmission of Leishmania tropica to hyraxes (Procavia capensis) by the bite of Phlebotomus arabicus, Microbes Infect. (2006) 8:1691–1694 [CrossRef] [PubMed].
  61. Tripp C.H., Haid B., Flacher V., Sixt M., Peter H., Farkas J., et al., The lymph vessel network in mouse skin visualised with antibodies against the hyaluronan receptor LYVE-1, Immunobiology (2008) 213:693–916 [CrossRef].
  62. Volf P., Hajmova M., Sadlova J., Votýpka J., Blocked stomodeal valve of the insect vector: Similar mechanism of transmission in two trypanosomatid models, Int. J. Parasitol. (2004) 34:1221–1227 [CrossRef] [PubMed].
  63. Walters L.L., Modi G.B., Chaplin G.L., Tesh R.B., Ultrastructural development of Leishmania chagasi in its vector, Lutzomyia longipalpis (Diptera: Psychodidae), Am. J. Trop. Med. Hyg. (1989) 41:295–317 [PubMed].
  64. Walters L.L., Leishmania differentiation in natural and unnatural sand fly hosts, J. Eukaryot. Microbiol. (1993) 40:196–206 [CrossRef] [PubMed].
  65. Warburg A., Schlein Y., The effect of postbloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major, Am. J. Trop. Med. Hyg. (1986) 35:926–930 [PubMed].
  66. Warburg A., The structure of the female sand fly (Phlebotomus papatasi) alimentay canal, Trans. R. Soc. Trop. Med. Hyg. (2008) 102:161–166 [CrossRef] [PubMed].
  67. Wohlfert E., Belkaid Y., Role of endogenous and induced regulatory T cells during infections, J. Clin. Immunol. (2008) 28:707–715 [CrossRef] [PubMed].