Open Access
Vet. Res.
Volume 39, Number 5, September-October 2008
Number of page(s) 13
Published online 03 July 2008
How to cite this article Vet. Res. (2008) 39:52
References of  Vet. Res. (2008) 39:52
  1. Anderson J.C., Veterinary aspects of staphylococci, in: Easmon C.S.F., Adlam C. (Eds.), Staphylococci and staphylococcal infections, Academic Press, London, UK, 1983, pp. 193-243.
  2. Bannerman D.D., Paape M.J., Hare W.R., Sohn E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci. (2003) 86:3128-3137 [PubMed].
  3. Bannerman D.D., PaapeM.J., Goff J.P., Kimura K., Lippolis J.D., Hope J.C., Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis, Vet. Res. (2004) 35:681-700 [CrossRef] [PubMed] [EDP Sciences].
  4. Bannerman D.D., Paape M.J., Lee J.W., Zhao X., Hope J.C., Rainard P., Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection, Clin. Diagn. Lab. Immunol. (2004) 11:463-472 [CrossRef] [PubMed].
  5. Barber M.R., Yang T.J., Chemotactic activities in nonmastitic and mastitic mammary secretions: presence of interleukin-8 in mastitic but not nonmastitic secretions, Clin. Diagn. Lab. Immunol. (1998) 5:82 [PubMed]- 86.
  6. Barkema H.W., Schukken Y.H., Zadoks R.N., The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis, J. Dairy Sci. (2006) 89:1877-1895 [PubMed].
  7. Blum J.W., Dosogne H., Hoeben D., Vangroenweghe F., Hammon H.M., Bruckmaier R.M., Burvenich C., Tumor necrosis factor-alpha and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows, Domest. Anim. Endocrinol. (2000) 19:223-235 [CrossRef] [PubMed].
  8. Brouillette E., Malouin F., The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse, Microbes Infect. (2005) 7:560-568 [CrossRef] [PubMed].
  9. Burton J.L., Erskine R.J., Immunity and mastitis. Some new ideas for an old disease, Vet. Clin. North Am. Food Anim. Pract. (2003) 19:1-45 [CrossRef] [PubMed].
  10. Burvenich C., Van Merris V., Mehrzad J., Diez- Fraile A., Duchateau L., Severity of E. coli mastitis is mainly determined by cow factors, Vet. Res. (2003) 34:521-564 [CrossRef] [PubMed] [EDP Sciences].
  11. Deininger S., Traub S., Aichele D., Rupp T., Baris T., Möller H.M., et al., Presentation of lipoteichoic acid potentiates its inflammatory activity, Immunobiology (2008) 213:519-529 [CrossRef] [PubMed].
  12. Diarra M.S., Petitclerc D., Deschênes E., Lessard N., Grondin G., Talbot B.G., Lacasse P., Lactoferrin against Staphylococcus aureus Mastitis. Lactoferrin alone or in combination with penicillin G on bovine polymorphonuclear function and mammary epithelial cells colonisation by Staphylococcus aureus, Vet. Immunol. Immunopathol. (2003) 95:33-42 [CrossRef] [PubMed].
  13. Fournier B., Philpott D.J., Recognition of Staphylococcus aureus by the innate immune system, Clin. Microbiol. Rev. (2005) 18:521-540 [CrossRef] [PubMed].
  14. Gao J.J., Xue Q., Zuvanich E.G., Haghi K.R., Morrison D.C., Commercial preparations of lipoteichoic acid contain endotoxin that contributes to activation of mouse macrophages in vitro, Infect. Immun. (2001) 69:751-757 [CrossRef] [PubMed].
  15. Georgin P., Gouet M., Statistiques avec Excel 2000, Eyrolles, Paris, France, 2000.
  16. Goldammer T., Zerbe H., Molenaar A., Schuberth H.J., Brunner R.M., Kata S.R., Seyfert H.M., Mastitis increases mammary mRNA abundance of betadefensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle, Clin. Diagn. Lab. Immunol. (2004) 11:174-185 [CrossRef] [PubMed].
  17. Gray C., Strandberg Y., Donaldson L., Tellam R.L., Bovine mammary epithelial cells, initiators of innate immune responses to mastitis, Aust. J. Exp. Agric. (2005) 45:757-761 [CrossRef].
  18. Greenwalt D.E., Mather I.H., Characterization of an apically derived epithelial membrane glycoprotein from bovine milk, which is expressed in capillary endothelia in diverse tissues, J. Cell Biol. (1985) 100:397-408 [CrossRef] [PubMed].
  19. Gutberlet T., Frank J., Bradaczek H., Fischer W., Effect of lipoteichoic acid on thermotropic membrane properties, J. Bacteriol. (1997) 179:2879-2883 [PubMed].
  20. Hagiwara S., Kawai K., Anri A., Nagahata H., Lactoferrin concentrations in milk from normal and subclinical mastitic cows, J. Vet. Med. Sci. (2003) 65:319-323 [CrossRef] [PubMed].
  21. Harmon R.J., Schanbacher F.L., Ferguson L.C., Smith K.L., Changes in lactoferrin, immunoglobulin G, bovine serum albumin, and alpha-lactalbumin during acute experimental and natural coliform mastitis in cows, Infect. Immun. (1976) 13:533-542 [PubMed].
  22. Henneke P., Morath S., Uematsu S., Weichert S., Pfitzenmaier M., Takeuchi O., et al., Golenbock D.T., Role of lipoteichoic acid in the phagocyte response to group B streptococcus, J. Immunol. (2005) 174:6449-6455 [PubMed].
  23. Hoebe K., Georgel P., Rutschmann S., Du X., Mudd S., Crozat K., et al., CD36 is a sensor of diacylglycerides, Nature (2005) 433:523-527 [CrossRef] [PubMed].
  24. Ibeagha-Awemu E.M., Lee J.W., Ibeagha A.E., Bannerman D.D., Paape M.J., Zhao X., Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells, Vet. Res. (2008) 39:11 [CrossRef] [PubMed].
  25. Lahouassa H., Moussay E., Rainard P., Riollet C., Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli, Cytokine (2007) 38:12-21 [CrossRef] [PubMed].
  26. Lahouassa H., Rainard P., Caraty A., Riollet C., Identification and characterization of a new interleukin-8 receptor in bovine species, Mol. Immunol. (2008) 45:1153-1164 [CrossRef] [PubMed].
  27. Lee J., Horuk R., Rice G.C., Bennett G.L., Camerato T., Wood W.I., Characterization of two high affinity human interleukin-8 receptors, J. Biol. Chem. (1992) 267:16283-16287 [PubMed].
  28. Lubick K., Jutila M.A., LTA recognition by bovine gammadelta T cells involves CD36, J. Leukoc. Biol. (2006) 79:1268-1270 [CrossRef] [PubMed].
  29. Morath S., Geyer A., Hartung T., Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus, J. Exp. Med. (2001) 193:393-397 [CrossRef] [PubMed].
  30. Morath S., Geyer A., Spreitzer I., Hermann C., Hartung T., Structural decomposition and heterogeneity of commercial lipoteichoic Acid preparations, Infect. Immun. (2002) 70:938-944 [CrossRef] [PubMed].
  31. Morath S., Stadelmaier A., Geyer A., Schmidt R.R., Hartung T., Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release, J. Exp. Med. (2002) 195:1635-1640 [CrossRef] [PubMed].
  32. Persson-Waller K., Colditz I.G., Seow H.F., Accumulation of leucocytes and cytokines in the lactating ovine udder during mastitis due to Staphylococcus aureus and Escherichia coli, Res.Vet. Sci. (1997) 62:63-66.
  33. Persson Waller K., Colditz I.G., Lun S., Ostensson K., Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis, Res. Vet. Sci. (2003) 74:31-36 [CrossRef] [PubMed].
  34. Postle D.S., Roguinsky M., Poutrel B., Induced staphylococcal infections in the bovine mammary gland, Am. J. Vet. Res. (1978) 39:29-35 [PubMed].
  35. Poutrel B., Caffin J.P., Rainard P., Physiological and pathological factors influencing bovine serum albumin content of milk, J. Dairy. Sci. (1983) 66:535-541 [PubMed].
  36. Rainard P., Poutrel B., Caffin J.P., Lactoferrin and transferrin in bovine milk in relation to certain physiological and pathological factors, Ann. Rech.Vet. (1982) 13:321-328.
  37. Rainard P., Paape M.J., Sensitization of the bovine mammary gland to Escherichia coli endotoxin, Vet. Res. (1997) 28:231-238 [PubMed].
  38. Rainard P., Sarradin P., Paape M.J., Poutrel B., Quantification of C5a/C5a $^{\rm desArg}$ in bovine plasma, serum and milk, Vet. Res. (1998) 29:73-88 [PubMed].
  39. Rainard P., Riollet C., Innate immunity of the bovine mammary gland, Vet. Res. (2006) 37:369-400 [CrossRef] [PubMed] [EDP Sciences].
  40. Rainard P., Riollet C., Berthon P., Cunha P., Fromageau A., Rossignol C., Gilbert B.F., The chemokine CXCL3 is responsible for the constitutive chemotactic activity of bovine milk for neutrophils, Mol. Immunol. (2003) doi:10.1016/j.molimm.2008.06.010.
  41. Rambeaud M., Almeida R.A., Pighetti G.M., Oliver S.P., Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis, Vet. Immunol. Immunopathol. (2003) 96:193-205 [CrossRef] [PubMed].
  42. Reinhardt T.A., Lippolis J.D., Bovine milk fat globule membrane proteome, J. Dairy Res. (2006) 73:406-416 [CrossRef] [PubMed].
  43. Riollet C., Rainard P., Poutrel B., Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus, Clin. Diagn. Lab. Immunol. (2000) 7:161-167 [CrossRef] [PubMed].
  44. Schanbacher F.L., Goodman R.E., Talhouk R.S., Bovine mammary lactoferrin: implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins, J. Dairy Sci. (1993) 76:3812-3831 [PubMed].
  45. Schröder N.W., Morath S., Alexander C., Hamann L., Hartung T., Zähringer U., et al., Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved, J. Biol. Chem. (2003) 278:15587 [CrossRef] [PubMed]- 15594.
  46. Shuster D.E., Harmon R.J., High cortisol concentrations and mediation of the hypogalactia during endotoxin-induced mastitis, J. Dairy Sci. (1992) 75:739-746 [PubMed].
  47. Shuster D.E., Kehrli M.E.Jr., Administration of recombinant human interleukin 1 receptor antagonist during endotoxin-induced mastitis in cows, Am. J. Vet. Res. (1995) 56:313-320 [PubMed].
  48. Shuster D.E., Kehrli M.E.Jr., Rainard P., Paape M., Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli, Infect. Immun. (1997) 65:3286-3292 [PubMed].
  49. Siegel S., Castellan N.J., Non-parametric statistics for the behavioral sciences, McGraw-Hill, New York, USA, 1988.
  50. Smith K.L., Schanbacher F.L., Lactoferrin as a factor of resistance to infection of the bovine mammary gland, J. Am. Vet. Med. Assoc. (1977) 170:1224-1227 [PubMed].
  51. Strandberg Y., Gray C., Vuocolo T., Donaldson L., Broadway M., Tellam R., Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells, Cytokine (2005) 31:72-86 [CrossRef] [PubMed].
  52. Sutra L., Poutrel B., Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus, J. Med. Microbiol. (1994) 40:79-89 [PubMed].
  53. Takahashi M., Jeevan A., Sawant K., McMurray D.N., Yoshimura T., Cloning and characterization of guinea pig CXCR1, Mol. Immunol. (2007) 44:878-888 [CrossRef] [PubMed].
  54. Van Amersfoort E.S., Van Berkel T.J., Kuiper J., Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock, Clin. Microbiol. Rev. (2003) 16:379-414 [CrossRef] [PubMed].
  55. Von Aulock S., Morath S., Hareng L., Knapp S., van Kessel K.P., van Strijp J.A., Hartung T., Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitment, Immunobiology (2003) 208:413-422 [CrossRef] [PubMed].
  56. Wellnitz O., Kerr D.E., Cryopreserved bovine mammary cells to model epithelial response to infection, Vet. Immunol. Immunopathol. (2004) 101:191-202 [CrossRef] [PubMed].
  57. Yang W., Zerbe H., Petzl W., Brunner R.M., Günther J., Draing C., et al., Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder, Mol. Immunol. (2008) 45:1385-1397 [CrossRef] [PubMed].