Free Access
Vet. Res.
Volume 39, Number 4, July-August 2008
Prion diseases in animals
Number of page(s) 17
Published online 17 April 2008
How to cite this article Vet. Res. (2008) 39:44
References of Vet. Res. 39 (2008) 441-17
  1. Asahi M., Fujii J., Suzuki K., Seo H.G., Kuzuya T., Hori M., et al., Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity, J. Biol. Chem. (1995) 270:21035–21039.
  2. Bareggi S.R., Braida D., Gervasoni M., Carcassola G., Pollera C., Verzoni C., Sala M., Neurochemical and behavioural modifications induced by scrapie infection in golden hamsters, Brain Res. (2003) 984:237–241.
  3. Bassant M.H., Picard M., Olichon D., Cathala F., Court L., Changes in the serotonergic, noradrenergic and dopaminergic levels in the brain of scrapie-infected rats, Brain Res. (1986) 367:360–363.
  4. Bate C., Reid S., Williams A., Killing of prion-damaged neurones by microglia, Neuroreport (2001) 12:2589–2594.
  5. Béranger F., Mangé A., Goud B., Lehmann S., Stimulation of PrP$^{\rm C}$ retrograde transport toward the endoplasmic reticulum increases accumulation of PrP(Sc) in prion-infected cells, J. Biol. Chem. (2002) 277:38972–38977.
  6. Bergström A.L., Cordes H., Zsurger N., Heegaard P.M., Laursen H., Chabry J., Amidation and structure relaxation abolish the neurotoxicity of the prion peptide PrP106-126 in vivo and in vitro, J. Biol. Chem. (2005) 280:23114–23121.
  7. Bouzamondo-Bernstein E., Hopkins S.D., Spilman P., Uyehara-Lock J., Deering C., Safar J., et al., The neurodegeneration sequence in prion diseases: evidence from functional, morphological and ultrastructural studies of the GABAergic system, J. Neuropathol. Exp. Neurol. (2004) 63:882–899.
  8. Brandner S., Isenmann S., Raeber A., Fischer M., Sailer A., Kobayashi Y., et al., Normal host prion protein necessary for scrapie-induced neurotoxicity, Nature (1996) 379:339–343.
  9. Bratosiewicz-Wasik J., Wasik T.J., Liberski P.P., Molecular approaches to mechanisms of prion diseases, Folia Neuropathol. (2004) 42 Suppl A:33–46.
  10. Brown D.R., Schmidt B., Kretzschmar H.A., Role of microglia and host prion protein in neurotoxicity of a prion protein fragment, Nature (1996) 380:345–347.
  11. Brown D.R., Schmidt B., Kretzschmar H.A., Effects of oxidative stress on prion protein expression in PC12 cells, Int. J. Dev. Neurosci. (1997) 15:961–972.
  12. Brown D.R., Besinger A., Prion protein expression and superoxide dismutase activity, Biochem. J. (1998) 334:423–429.
  13. Bruce M.E., McBride P.A., Jeffrey M., Scott J.R., PrP in pathology and pathogenesis in scrapie-infected mice, Mol. Neurobiol. (1994) 8:105–112.
  14. Carimalo J., Cronier S., Petit G., Peyrin J.M., Boukhtouche F., Arbez N., et al., Activation of the JNK-c-Jun pathway during the early phase of neuronal apoptosis induced by PrP106-126 and prion infection, Eur. J. Neurosci. (2005) 21:2311–2319.
  15. Castilla J., Hetz C., Soto C., Molecular mechanisms of neurotoxicity of pathological prion protein, Curr. Mol. Med. (2004) 4:397–403.
  16. Chabry J., Ratsimanohatra C., Sponne I., Elena P.P., Vincent J.P., Pillot T., In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118-135 independently of PrP expression, J. Neurosci. (2003) 23:462–469.
  17. Chen S., Mangé A., Dong L., Lehmann S., Schachner M., Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival, Mol. Cell. Neurosci. (2003) 22:227–233.
  18. Chesebro B., Trifilo M., Race R., Meade-White K., Teng C., LaCasse R., et al., Anchorless prion protein results in infectious amyloid disease without clinical scrapie, Science (2005) 308:1435–1439.
  19. Chiarini A., Dal Pra I., Whitfield J.F., Armato U., The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines, Ital. J. Anat. Embryol. (2006) 111:221–246.
  20. Chiesa R., Piccardo P., Dossena S., Nowoslawski L., Roth K.A., Ghetti B., Harris D.A., Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease, Proc. Natl. Acad. Sci. U.S.A. (2005) 102:238–243.
  21. Ciesielski-Treska J., Grant N.J., Ulrich G., Corrotte M., Bailly Y., Haeberle A.M., et al., Fibrillar prion peptide (106-126) and scrapie prion protein hamper phagocytosis in microglia, Glia (2004) 46:101–115.
  22. Cohen E., Taraboulos A., Scrapie-like prion protein accumulates in aggresomes of cyclosporin A- treated cells, EMBO J. (2003) 22:404–417.
  23. Collinge J., Whittington M.A., Sidle K.C., Smith C.J., Palmer M.S., Clarke A.R., Jefferys J.G., Prion protein is necessary for normal synaptic function, Nature (1994) 370:295–297.
  24. Copani A., Uberti D., Sortino M.A., Bruno V., Nicoletti F., Memo M., Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path?, Trends Neurosci. (2001) 24:25–31.
  25. Corsaro A., Thellung S., Villa V., Principe D.R., Paludi D., Arena S., et al., Prion protein fragment 106-126 induces a p38 MAP kinase-dependent apoptosis in SH-SY5Y neuroblastoma cells independently from the amyloid fibril formation, Ann. N. Y. Acad. Sci. (2003) 1010:610–622.
  26. Coulpier M., Messiaen S., Hamel R., Fernández de Marco M., Lilin T., Eloit M., Bax deletion does not protect neurons from BSE-induced death, Neurobiol. Dis. (2006) 23:603–611.
  27. Cronier S., Laude H., Peyrin J.M., Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death, Proc. Natl. Acad. Sci. USA (2004) 101:12271–12276.
  28. Crozet C., Vézilier J., Delfieu V., Nishimura T., Onodera T., Casanova D., et al., The truncated 23-230 form of the prion protein localizes to the nuclei of inducible cell lines independently of its nuclear localization signals and is not cytotoxic, Mol. Cell. Neurosci. (2006) 32:315–323.
  29. Cunningham C., Deacon R., Wells H., Boche D., Waters S., Diniz C.P., et al., Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease, Eur. J. Neurosci. (2003) 17:2147–2155.
  30. Della-Bianca V., Rossi F., Armato U., Dal-Pra I., Costantini C., Perini G., et al., Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106-126), J. Biol. Chem. (2001) 276:38929–38933.
  31. Diez M., Groth D., DeArmond S.J., Prusiner S.B., Hökfelt T., Changes in neuropeptide expression in mice infected with prions, Neurobiol. Aging (2007) 28:748–765.
  32. Drisaldi B., Stewart R.S., Adles C., Stewart L.R., Quaglio E., Biasini E., et al., Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation, J. Biol. Chem. (2003) 278:21732–21743.
  33. Dron M., Bailly Y., Beringue V., Haeberlé A.M., Griffond B., Risold P.Y., et al., Scrg1 is induced in TSE and brain injuries, and associated with autophagy, Eur. J. Neurosci. (2005) 22:133–146.
  34. Dron M., Bailly Y., Beringue V., Haeberlé A.M., Griffond B., Risold P.Y., et al., Scrg1, a potential marker of autophagy in transmissible spongiform encephalopathies, Autophagy (2006) 2:58–60.
  35. Dupiereux I., Zorzi W., Rachidi W., Zorzi D., Pierard O., Lhereux B., et al., Study on the toxic mechanism of prion protein peptide 106-126 in neuronal and non neuronal cells, J. Neurosci. Res. (2006) 84:637–646.
  36. Ersdal C., Simmons M.M., González L., Goodsir C.M., Martin S., Jeffrey M., Relationships between ultrastructural scrapie pathology and patterns of abnormal prion protein accumulation, Acta Neuropathol. (2004) 107:428–438.
  37. Fabrizi C., Silei V., Menegazzi M., Salmona M., Bugiani O., Tagliavini F., et al., The stimulation of inducible nitric-oxide synthase by the prion protein fragment 106–126 in human microglia is tumor necrosis factor-alpha-dependent and involves p38 mitogen-activated protein kinase, J. Biol. Chem. (2001) 276:25692–25696.
  38. Falsig J., Julius C., Margalith I., Schwarz P., Heppner F.L., Aguzzi A., A versatile prion replication assay in organotypic brain slices, Nat. Neurosci. (2008) 11:109–117.
  39. Ferreiro E., Oliveira C.R., Pereira C., Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide, J. Neurosci. Res. (2004) 76:872–880.
  40. Ferrer I., Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis?, Acta Neuropathol (1999) 97:5–12.
  41. Ferrer I., Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease, Cerebellum (2002) 1:213–222.
  42. Fioriti L., Dossena S., Stewart L.R., Stewart R.S., Harris D.A., Forloni G., Chiesa R., Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations, J. Biol. Chem. (2005) 280:11320–11328.
  43. Fioriti L., Angeretti N., Colombo L., De Luigi A., Colombo A., Manzoni C., et al., Neurotoxic and gliotrophic activity of a synthetic peptide homologous to Gerstmann-Sträussler-Scheinker disease amyloid protein, J. Neurosci. (2007) 27:1576–1583.
  44. Fraser E., McDonagh A.M., Head M., Bishop M., Ironside J.W., Mann D.M., Neuronal and astrocytic responses involving the serotonergic system in human spongiform encephalopathies, Neuropathol. Appl. Neurobiol. (2003) 29:482–495.
  45. Gabus C., Auxilien S., Péchoux C., Dormont D., Swietnicki W., Morillas M., et al., The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein, J. Mol. Biol. (2001) 307:1011–1021.
  46. Gavín R., Braun N., Nicolas O., Parra B., Ureña J.M., Mingorance A., et al., PrP(106-126) activates neuronal intracellular kinases and Egr1 synthesis through activation of NADPH-oxidase independently of PrP$^{\rm C}$, FEBS Lett. (2005) 579:4099–4106.
  47. Gong J., Jellali A., Forster V., Mutterer J., Dubus E., Altrock W.D., et al., The toxicity of the PrP106-126 prion peptide on cultured photoreceptors correlates with the prion protein distribution in the mammalian and human retina, Am. J. Pathol. (2007) 170:1314–1324.
  48. Goudsmit J., Rohwer R.G., Silbergeld E.K., Gajdusek D.C., Hypersensitivity to central serotonin receptor activation in scrapie-infected hamsters and the effect of serotonergic drugs on scrapie symptoms, Brain Res. (1981) 220:372–377.
  49. Grenier C., Bissonnette C., Volkov L., Roucou X., Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells, J. Neurochem. (2006) 97:1456–1466.
  50. Gu Y., Hinnerwisch J., Fredricks R., Kalepu S., Mishra R.S., Singh N., Identification of cryptic nuclear localization signals in the prion protein, Neurobiol. Dis. (2003) 12:133–149.
  51. Hachiya N.S., Yamada M., Watanabe K., Jozuka A., Ohkubo T., Sano K., et al., Mitochondrial localization of cellular prion protein (PrP$^{\rm C}$) invokes neuronal apoptosis in aged transgenic mice overexpressing PrP$^{\rm C}$, Neurosci. Lett. (2005) 374:98–103.
  52. Haïk S., Peyrin J.M., Lins L., Rosseneu M.Y., Brasseur R., Langeveld J.P., et al., Neurotoxicity of the putative transmembrane domain of the prion protein, Neurobiol. Dis. (2000) 7:644–656.
  53. Harris D.A., True H.L., New insights into prion structure and toxicity, Neuron (2006) 50:353–357.
  54. Harrison C.F., Barnham K.J., Hill A.F., Neurotoxic species in prion disease: a role for PrP isoforms?, J. Neurochem. (2007) 103:1709–1720.
  55. Hegde R.S., Mastrianni J.A., Scott M.R., DeFea K.A., Tremblay P., Torchia M., et al., A transmembrane form of the prion protein in neurodegenerative disease, Science (1998) 279:827–834.
  56. Hegde R.S., Tremblay P., Groth D., DeArmond S.J., Prusiner S.B., Lingappa V.R., Transmissible and genetic prion diseases share a common pathway of neurodegeneration, Nature (1999) 402:822–826.
  57. Hetz C., Russelakis-Carneiro M., Maundrell K., Castilla J., Soto C., Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein, EMBO J. (2003) 22:5435–5445.
  58. Hetz C., Castilla J., Soto C., Perturbation of endoplasmic reticulum homeostasis facilitates prion replication, J. Biol. Chem. (2007) 282:12725–12733.
  59. Hetz C.A., Soto C., Stressing out the ER: a role of the unfolded protein response in prion-related disorders, Curr. Mol. Med. (2006) 6:37–43.
  60. Hsiao K.K., Groth D., Scott M., Yang S.L., Serban H., Rapp D., et al., Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein, Proc. Natl. Acad. Sci. USA (1994) 91:9126–9130.
  61. Ishikura N., Clever J.L., Bouzamondo-Bernstein E., Samayoa E., Prusiner S.B., Huang E.J., DeArmond S.J., Notch-1 activation and dendritic atrophy in prion disease, Proc. Natl. Acad. Sci. USA (2005) 102:886–891.
  62. Ishikura N., Notch-1 is involved in neurodegeneration in prion diseases, Nippon Rinsho (2007) 65:1397–1400 (in Japanese).
  63. Jamieson E., Jeffrey M., Ironside J.W., Fraser J.R., Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie, Neuroreport (2001) 12:2147–2153.
  64. Kristiansen M., Messenger M.J., Klöhn P.C., Brandner S., Wadsworth J.D., Collinge J., Tabrizi S.J., Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis, J. Biol. Chem. (2005) 280:38851–38861.
  65. Kristiansen M., Deriziotis P., Dimcheff D.E., Jackson G.S., Ovaa H., Naumann H., et al., Disease-associated prion protein oligomers inhibit the 26S proteasome, Mol. Cell (2007) 26:175–188.
  66. Lasmézas C.I., Deslys J.P., Robain O., Jaegly A., Beringue V., Peyrin J.M., et al., Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein, Science (1997) 275:402–405.
  67. Li A., Barmada S.J., Roth K.A., Harris D.A., N-terminally deleted forms of the prion protein activate both Bax-dependent and Bax-independent neurotoxic pathways, J. Neurosci. (2007) 27:852–859.
  68. Liberski P.P., Sikorska B., Bratosiewicz-Wasik J., Gajdusek D.C., Brown P., Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy, Int. J. Biochem. Cell Biol. (2004) 36:2473–2490.
  69. Lorenz H., Windl O., Kretzschmar H.A., Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases, J. Biol. Chem. (2002) 277:8508–8516.
  70. Ma J., Lindquist S., Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation, Proc. Natl. Acad. Sci. USA (2001) 98:14955–14960.
  71. Ma J., Lindquist S., Conversion of PrP to a self-perpetuating PrP$^{\rm Sc}$-like conformation in the cytosol, Science (2002) 298:1785–1788.
  72. Ma J., Wollmann R., Lindquist S., Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol, Science (2002) 298:1781–1785.
  73. Mallucci G., Dickinson A., Linehan J., Klöhn P.C., Brandner S., Collinge J., et al., Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis, Science (2003) 302:871–874.
  74. Mallucci G.R., White M.D., Farmer M., Dickinson A., Khatun H., Powell A.D., et al., Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice, Neuron (2007) 53:325–335.
  75. Mangé A., Crozet C., Lehmann S., Béranger F., Scrapie-like prion protein is translocated to the nuclei of infected cells independently of proteasome inhibition and interacts with chromatin, J. Cell. Sci. (2004) 117:2411–2416.
  76. Marella M., Chabry J., Neurons and astrocytes respond to prion infection by inducing microglia recruitment, J. Neurosci. (2004) 24:620–627.
  77. Marella M., Gaggioli C., Batoz M., Deckert M., Tartare-Deckert S., Chabry J., Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment, J. Biol. Chem. (2005) 280:1529–1534.
  78. Menzies F.M., Ravikumar B., Rubinsztein D.C., Protective roles for induction of autophagy in multiple proteinopathies, Autophagy (2006) 2:224–225.
  79. Milhavet O., McMahon H.E., Rachidi W., Nishida N., Katamine S., Mangé A., et al., Prion infection impairs the cellular response to oxidative stress, Proc. Natl. Acad. Sci. USA (2000) 97:13937–13942.
  80. Milhavet O., Lehmann S., Oxidative stress and the prion protein in transmissible spongiform encephalopathies, Brain Res. Brain Res. Rev. (2002) 38:328–339.
  81. Mironov A. Jr., Latawiec D., Wille H., Bouzamondo-Bernstein E., Legname G., Williamson R.A., et al., Cytosolic prion protein in neurons, J. Neurosci. (2003) 23:7183–7193.
  82. Mishra R.S., Bose S., Gu Y., Li R., Singh N., Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders, J. Alzheimers Dis. (2003) 5:15–23.
  83. Mouillet-Richard S., Ermonval M., Chebassier C., Laplanche J.L., Lehmann S., Launay J.M., Kellermann O., Signal transduction through prion protein, Science (2000) 289:1925–1928.
  84. Ning Z.Y., Zhao D.M., Liu H.X., Yang J.M., Han C.X., Cui Y.L., et al., Altered expression of the prion gene in rat astrocyte and neuron cultures treated with prion peptide 106-126, Cell. Mol. Neurobiol. (2005) 25:1171–1183.
  85. Nishida N., Harris D.A., Vilette D., Laude H., Frobert Y., Grassi J., et al., Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein, J. Virol. (2000) 74:320–325.
  86. Nishimura T., Sakudo A., Hashiyama Y., Yachi A., Saeki K., Matsumoto Y., et al., Serum withdrawal-induced apoptosis in ZrchI prion protein (PrP) gene-deficient neuronal cell line is suppressed by PrP, independent of Doppel, Microbiol. Immunol. (2007) 51:457–466.
  87. Novitskaya V., Bocharova O.V., Bronstein I., Baskakov I.V., Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons, J. Biol. Chem. (2006) 281:13828–13836.
  88. Novitskaya V., Makarava N., Sylvester I., Bronstein I.B., Baskakov I.V., Amyloid fibrils of mammalian prion protein induce axonal degeneration in NTERA2-derived terminally differentiated neurons, J. Neurochem. (2007) 102:398–407.
  89. O'Donovan C.N., Tobin D., Cotter T.G., Prion protein fragment PrP-(106-126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells, J. Biol. Chem. (2001) 276:43516–43523.
  90. Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N., Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species, J. Biol. Chem. (1992) 267:18505–18510.
  91. Orsi A., Fioriti L., Chiesa R., Sitia R., Conditions of endoplasmic reticulum stress favor the accumulation of cytosolic prion protein, J. Biol. Chem. (2006) 281:30431–30438.
  92. Peyrin J.M., Lasmézas C.I., Haïk S., Tagliavini F., Salmona M., Williams A., et al., Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines, Neuroreport (1999) 10:723–729.
  93. Pietri M., Caprini A., Mouillet-Richard S., Pradines E., Ermonval M., Grassi J., et al., Overstimulation of PrP$^{\rm C}$ signaling pathways by prion peptide 106-126 causes oxidative injury of bioaminergic neuronal cells, J. Biol. Chem. (2006) 281:28470–28479.
  94. Pillot T., Lins L., Goethals M., Vanloo B., Baert J., Vandekerckhove J., et al., The 118-135 peptide of the human prion protein forms amyloid fibrils and induces liposome fusion, J. Mol. Biol. (1997) 274:381–393.
  95. Pillot T., Drouet B., Pinçon-Raymond M., Vandekerckhove J., Rosseneu M., Chambaz J., A nonfibrillar form of the fusogenic prion protein fragment (118–135) induces apoptotic cell death in rat cortical neurons, J. Neurochem. (2000) 75:2298–2308.
  96. Prusiner S.B., Novel proteinaceous infectious particles cause scrapie, Science (1982) 216:136–144.
  97. Prusiner S.B., DeArmond S.J., Prion diseases of the central nervous system, Monogr. Pathol. (1990) 86–122.
  98. Prusiner S.B., Biology and genetics of prion diseases, Annu. Rev. Microbiol. (1994) 48:655–686.
  99. Puoti G., Giaccone G., Mangieri M., Limido L., Fociani P., Zerbi P., et al., Sporadic Creutzfeldt-Jakob disease: the extent of microglia activation is dependent on the biochemical type of PrP$^{\rm Sc}$, J. Neuropathol. Exp. Neurol. (2005) 64:902–909.
  100. Rachidi W., Mangé A., Senator A., Guiraud P., Riondel J., Benboubetra M., et al., Prion infection impairs copper binding of cultured cells, J. Biol. Chem. (2003) 278:14595–14598.
  101. Rachidi W., Vilette D., Guiraud P., Arlotto M., Riondel J., Laude H., et al., Expression of Prion Protein Increases Cellular Copper Binding and Antioxidant Enzyme Activities but Not Copper Delivery, J. Biol. Chem. (2003) 278:9064–9072.
  102. Rambold A.S., Miesbauer M., Rapaport D., Bartke T., Baier M., Winklhofer K.F., Tatzelt J., Association of Bcl-2 with misfolded prion protein is linked to the toxic potential of cytosolic PrP, Mol. Biol. Cell (2006) 17:3356–3368.
  103. Rogers M., Yehiely F., Scott M., Prusiner S.B., Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells, Proc. Natl. Acad. Sci. U.S.A. (1993) 90:3182–3186.
  104. Roucou X., Giannopoulos P.N., Zhang Y., Jodoin J., Goodyer C.G., LeBlanc A., Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells, Cell Death Differ. (2005) 12:783–795.
  105. Roucou X., LeBlanc A.C., Cellular prion protein neuroprotective function: implications in prion diseases, J. Mol. Med. (2005) 83:3–11.
  106. Rubinsztein D.C., DiFiglia M., Heintz N., Nixon R.A., Qin Z.H., Ravikumar B., et al., Autophagy and its possible roles in nervous system diseases, damage and repair, Autophagy (2005) 1:11–22.
  107. Russelakis-Carneiro M., Hetz C., Maundrell K., Soto C., Prion replication alters the distribution of synaptophysin and caveolin 1 in neuronal lipid rafts, Am. J. Pathol. (2004) 165:1839–1848.
  108. Sáez-Valero J., Angeretti N., Forloni G., Caspase-3 activation by beta-amyloid and prion protein peptides is independent from their neurotoxic effect, Neurosci. Lett. (2000) 293:207–210.
  109. Santuccione A., Sytnyk V., Leshchyns'ka I., Schachner M., Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth, J. Cell Biol. (2005) 169:341–354.
  110. Schätzl H.M., Laszlo L., Holtzman D.M., Tatzelt J., DeArmond S.J., Weiner R.I., et al., A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis, J. Virol. (1997) 71:8821–8831.
  111. Schneider B., Mutel V., Pietri M., Ermonval M., Mouillet-Richard S., Kellermann O., NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells, Proc. Natl. Acad. Sci. USA (2003) 100:13326–13331.
  112. Sikorska B., Mechanisms of neuronal death in transmissible spongiform encephalopathies, Folia Neuropathol. (2004) 42 Suppl B:89–95.
  113. Silveira J.R., Raymond G.J., Hughson A.G., Race R.E., Sim V.L., Hayes S.F., Caughey B., The most infectious prion protein particles, Nature (2005) 437:257–261.
  114. Sisó S., Puig B., Varea R., Vidal E., Acín C., Prinz M., et al., Abnormal synaptic protein expression and cell death in murine scrapie, Acta Neuropathol. (2002) 103:615–626.
  115. Solforosi L., Criado J.R., McGavern D.B., Wirz S., Sánchez-Alavez M., Sugama S., et al., Cross-linking cellular prion protein triggers neuronal apoptosis in vivo, Science (2004) 303:1514–1516.
  116. Sponne I., Fifre A., Koziel V., Kriem B., Oster T., Olivier J.L., Pillot T., Oligodendrocytes are susceptible to apoptotic cell death induced by prion protein-derived peptides, Glia (2004) 47:1–8.
  117. Stewart L.R., White A.R., Jobling M.F., Needham B.E., Maher F., Thyer J., et al., Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106-126, J. Neurosci. Res. (2001) 65:565–572.
  118. Stewart R.S., Harris D.A., A transmembrane form of the prion protein is localized in the Golgi apparatus of neurons, J. Biol. Chem. (2005) 280:15855–15864.
  119. Thellung S., Villa V., Corsaro A., Arena S., Millo E., Damonte G., et al., p38 MAP kinase mediates the cell death induced by PrP106-126 in the SH-SY5Y neuroblastoma cells, Neurobiol. Dis. (2002) 9:69–81.
  120. Thellung S., Villa V., Corsaro A., Pellistri F., Venezia V., Russo C., et al., ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation, Glia (2007) 55:1469–1485.
  121. Unterberger U., Höftberger R., Gelpi E., Flicker H., Budka H., Voigtländer T., Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo, J. Neuropathol. Exp. Neurol. (2006) 65:348–357.
  122. Vilette D., Cell models of prion infection, Vet. Res. (2007) 39:10.
  123. Vincent I., Pae C.I., Hallows J.L., The cell cycle and human neurodegenerative disease, Prog Cell Cycle Res (2003) 5:31–41.
  124. Weissmann C., The state of the prion, Nat. Rev. Microbiol. (2004) 2:861–871.
  125. Yedidia Y., Horonchik L., Tzaban S., Yanai A., Taraboulos A., Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein, EMBO J. (2001) 20:5383–5391.