Free Access
Vet. Res.
Volume 39, Number 3, May-June 2008
Number of page(s) 18
Published online 15 February 2008
How to cite this article Vet. Res. (2008) 39:27
References of  Vet. Res. (2008) 39:27
  1. Andersen A.A., Vanrompay D., Avian chlamydiosis, Rev. -Off. Int. Epizoot. (2000) 19:396-404.
  2. Balsara Z.R., Roan N.R., Steele L.N., Starnbach M.N., Developmental regulation of Chlamydia trachomatis class I accessible protein-1, a CD8+ T cell antigen, J. Infect. Dis. (2006) 193:1459-1463 [CrossRef] [PubMed].
  3. Blom N., Gammeltoft S., Brunak S., Sequence and structure-based prediction of eukaryotic protein phosphorylation sites, J. Mol. Biol. (1999) 294:1351-1362 [CrossRef] [PubMed].
  4. Clifton D.R., Dooley C.A., Grieshaber S.S., Carabeo R.A., Fields K.A., Hackstadt T., Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin, Infect. Immun. (2005) 73:3860-3868 [CrossRef] [PubMed].
  5. Clifton D.R., Fields K.A., Grieshaber S.S., Dooley C.A., Fischer E.R., Mead D.J., Carabeo R.A., Hackstadt T., A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin, Proc. Natl. Acad. Sci. USA (2004) 101:10166-10171 [CrossRef] [PubMed].
  6. Cornelis G.R., The Yersinia Ysc-Yop "type III" weaponry, Nat. Rev. Mol. Cell Biol. (2002) 3:742-752 [CrossRef] [PubMed].
  7. Delevoye C., Nilges M., Dautry-Varsat A., Subtil A., Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes, J. Biol. Chem. (2004) 279:46896-46906 [CrossRef] [PubMed].
  8. Douglas A.L., Hatch T.P., Expression of the transcripts of the sigma factors and putative sigma factor regulators of Chlamydia trachomatis L2, Gene (2000) 247:209-214 [CrossRef] [PubMed].
  9. Fields K.A., Hackstadt T., Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism, Mol. Microbiol. (2000) 38:1048-1060 [CrossRef] [PubMed].
  10. Fields K.A., Hackstadt T., The chlamydial inclusion: escape from the endocytic pathway, Annu. Rev. Cell Dev. Biol. (2002) 18:221-245 [CrossRef] [PubMed].
  11. Fields K.A., Hackstadt T., The Chlamydia type III secretion system: structure and implications for pathogenesis, in: Bavoil P.M., Wyrick P.B. (Eds.), Chlamydia: genomics and pathogenesis, Horizon Bioscience, Wymondham, Norfolk, 2006, pp. 219-233.
  12. Fields K.A., Mead D.J., Dooley C.A., Hackstadt T., Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development, Mol. Microbiol. (2003) 48:671-683 [CrossRef] [PubMed].
  13. Fling S.P., Sutherland R.A., Steele L.N., Hess B., D'Orazio S.E., Maisonneuve J., Lampe M.F., Probst P., Starnbach M.N., CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis, Proc. Natl. Acad. Sci. USA (2001) 98:1160-1165 [CrossRef] [PubMed].
  14. Geens T., Desplanques A., Van Loock M., Bönner B.M., Kaleta E.F., Magnino S., Andersen A.A., Everett K.D.E., Vanrompay D., Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method, J. Clin. Microbiol. (2005) 43:2456-2461 [CrossRef] [PubMed].
  15. Geer L.Y., Domrachev M., Lipman D.J., Bryant S.H., CDART: protein homology by domain architecture, Genome Res. (2002) 12:1619-1623 [CrossRef] [PubMed].
  16. Herrmann M., Schuhmacher A., Muhldorfer I., Melchers K., Prothmann C., Dammeier S., Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183, Res. Microbiol. (2006) 157:513-524 [CrossRef] [PubMed].
  17. Ho T.D., Starnbach M.N., The Salmonella enterica serovar Typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells, Infect. Immun. (2005) 73:905-911 [CrossRef] [PubMed].
  18. Hogan R.J., Mathews S.A., Mukhopadhyay S., Summersgill J.T., Timms P., Chlamydial persistence: beyond the biphasic paradigm, Infect. Immun. (2004) 72:1843-1855 [CrossRef] [PubMed].
  19. Hueck C.J., Type III protein secretion systems in bacterial pathogens of animals and plants, Microbiol. Mol. Biol. Rev. (1998) 62:379-433 [PubMed].
  20. Kalman S., Mitchell W., Marathe R., Lammel C., Fan J., Hyman R.W., Olinger L., Grimwood J., Davis R.W., Stephens R.S., Comparative genomes of Chlamydia pneumoniae and C. trachomatis, Nat. Genet. (1999) 21:385-389 [CrossRef] [PubMed].
  21. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (1970) 227:680-685 [CrossRef] [PubMed].
  22. Letunic I., Copley R.R., Pils B., Pinkert S., Schultz J., Bork P., SMART 5: domains in the context of genomes and networks, Nucleic Acids Res. (2006) 34:D257-D260 [CrossRef] [PubMed].
  23. Lugert R., Kuhns M., Polch T., Gross U., Expression and localization of type III secretionrelated proteins of Chlamydia pneumoniae, Med. Microbiol. Immunol. (2004) 193:163-171 [CrossRef] [PubMed].
  24. Pallen M.J., Beatson S.A., Bailey C.M., Bioinformatics, genomics and evolution of non-flagellar type- III secretion systems: a Darwinian perspective, FEMS Microbiol. Rev. (2005) 29:201-229 [CrossRef] [PubMed].
  25. Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S., Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis (1999) 20:3551-3567 [CrossRef] [PubMed].
  26. Plano G.V., Straley S.C., Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis, J. Bacteriol. (1995) 177:3843-3854 [PubMed].
  27. Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F., White O., et al., Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39, Nucleic Acids Res. (2000) 28:1397-1406 [CrossRef] [PubMed].
  28. Read T.D., Myers G.S., Brunham R.C., Nelson W.C., Paulsen I.T., Heidelberg J., et al., Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of nichespecific genes in the evolution of the Chlamydiaceae, Nucleic Acids Res. (2003) 31:2134-2147 [CrossRef] [PubMed].
  29. Rockey D.D., Grosenbach D., Hruby D.E., Peacock M.G., Heinzen R.A., Hackstadt T., Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion, Mol. Microbiol. (1997) 24:217-228 [CrossRef] [PubMed].
  30. Rockey D.D., Scidmore M.A., Bannantine J.P., Brown W.J., Proteins in the chlamydial inclusion membrane, Microbes Infect. (2002) 4:333-340 [CrossRef] [PubMed].
  31. Shaw E.I., Dooley C.A., Fischer E.R., Scidmore M.A., Fields K.A., Hackstadt T., Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle, Mol. Microbiol. (2000) 37:913-925 [CrossRef] [PubMed].
  32. Slepenkin A., de la Maza L.M., Peterson E.M., Interaction between components of the type III secretion system of Chlamydiaceae, J. Bacteriol. (2005) 187:473-479 [CrossRef] [PubMed].
  33. Slepenkin A., Motin V., de la Maza L.M., Peterson E.M., Temporal expression of type III secretion genes of Chlamydia pneumoniae, Infect. Immun. (2003) 71:2555-2562 [CrossRef] [PubMed].
  34. Stephens R.S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., et al., Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis, Science (1998) 282:754-759 [CrossRef] [PubMed].
  35. Subtil A., Delevoye C., Balana M.E., Tastevin L., Perrinet S., Dautry-Varsat A., A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates, Mol. Microbiol. (2005) 56:1636-1647 [PubMed].
  36. Subtil A., Parsot C., Dautry-Varsat A., Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery, Mol. Microbiol. (2001) 39:792-800 [CrossRef] [PubMed].
  37. Thomson N.R., Yeats C., Bell K., Holden M.T., Bentley S.D., Livingstone M., et al., The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation, Genome Res. (2005) 15:629-640 [CrossRef] [PubMed].
  38. Troisfontaines P., Cornelis G.R., Type III secretion: more systems than you think, Physiology (Bethesda) (2005) 20:326-339 [PubMed].
  39. Van Loock M., Vanrompay D., Herrmann B., Vander S.J., Volckaert G., Goddeeris B.M., Everett K.D., Missing links in the divergence of Chlamydophila abortus from Chlamydophila psittaci, Int. J. Syst. Evol. Microbiol. (2003) 53:761-770 [CrossRef] [PubMed].
  40. Vanrompay D., Andersen A.A., Ducatelle R., Haesebrouck F., Serotyping of European isolates of Chlamydia psittaci from poultry and other birds, J. Clin. Microbiol. (1993) 31:134-137 [PubMed].
  41. Vanrompay D., Charlier G., Ducatelle R., Haesebrouck F., Ultrastructural changes in avian Chlamydia psittaci serovar A-, B-, and D-infected Buffalo Green Monkey cells, Infect. Immun. (1996) 64:1265-1271 [PubMed].
  42. Vanrompay D., Ducatelle R., Haesebrouck F., Diagnosis of avian chlamydiosis: specificity of the modified Gimenez staining on smears and comparison of the sensitivity of isolation in eggs and three different cell cultures, Zentralblatt Veterinarmedizin Reihe B (1992) 39:105-112 [PubMed].
  43. Wilson P.A., Phipps J., Samuel D., Saunders N.A., Development of a simplified polymerase chain reaction-enzyme immunoassay for the detection of Chlamydia pneumoniae, J. Appl. Bacteriol. (1996) 80:431-438 [PubMed].
  44. Woestyn S., Allaoui A., Wattiau P., Cornelis G.R., YscN, the putative energizer of the Yersinia Yop secretion machinery, J. Bacteriol. (1994) 176:1561-1569 [PubMed].