Free Access
Issue
Vet. Res.
Volume 37, Number 2, March-April 2006
Page(s) 219 - 229
DOI https://doi.org/10.1051/vetres:2005051
Published online 14 February 2006
How to cite this article Vet. Res. (2006) 219-229
References of Vet. Res. 37 (2006) 219-229
  1. Alluwaimi A.M., Leutenegger C.M., Farver T.B., Rossitto P.V., Smith W.L., Cullor J.S., The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland, J. Vet. Med. B Infect. Dis. Vet. Public Health 50 (2003) 105-111 [PubMed].
  2. Bannerman D.D., Paape M.J., Hare W.R., Sohn E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci. 86 (2003) 3128-3137 [PubMed].
  3. Bannerman D.D., Paape M.J., Lee J.-W., Zhao X., Hope J.C., Rainard P., Escherichia coli and Staphylococcus aureus elicit different innate immune responses following intramammary infection, Clin. Diagn. Lab. Immunol. 11 (2004) 463-472 [CrossRef] [PubMed].
  4. Barkema H.W., Schukken Y.H., Lam T.J., Beiboer M.L., Wilmink H., Benedictus G., Brand A., Incidence of clinical mastitis in dairy herds grouped in three categories by bulk milk somatic cell counts, J. Dairy Sci. 81 (1998) 411-419 [PubMed].
  5. Burvenich C., Van Merris V., Mehrzad J., Diez-Fraile A., Duchateau L., Severity of E. coli mastitis is mainly determined by cow factors, Vet. Res. 34 (2003) 521-564 [CrossRef] [PubMed] [EDP Sciences].
  6. Chow J.C., Young D.W., Golenbock D.T., Christ W.J., Gusovsky F., Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction, J. Biol. Chem. 274 (1999) 10689-10692 [CrossRef] [PubMed].
  7. Goldammer T., Zerbe H., Molenaar A., Schuberth H.-J., Brunner R.M., Kata S.R., Seyfert H.-M., Mastitis increases mammary mRNA abundance of $\beta$-defensin 5, Toll-like -receptor 2 (TLR2), and TLR4 but not TLR9 in cattle, Clin. Diagn. Lab. Immunol. 11 (2004) 174-185 [CrossRef] [PubMed].
  8. Gupta D., Kirkland T.N., Viriyakosol S., Dziarski R., CD14 is a cell-activating receptor for bacterial peptidoglycan, J. Biol. Chem. 271 (1996) 23310-23316 [CrossRef] [PubMed].
  9. Lee C.-S., Wooding F.B.P., Kemp P., Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretion, colostrums, and milk from normal cows, J. Dairy Res. 47 (1980) 39-50 [PubMed].
  10. Lee J., Zhao X., Recombinant human interleukin-8, but not human interleukin-1$\beta$, induces bovine neutrophil migration in an in vitro co-culture system, Cell Biol. Int. 24 (2000) 889-895 [CrossRef] [PubMed].
  11. Lee J.-W., Paape M.J., Elsasser T.H., Zhao X., Recombinant soluble CD14 reduces severity of intramammary infection by Escherichia coli, Infect. Immun. 71 (2003) 4034-4039 [CrossRef] [PubMed].
  12. Leutenegger C.M., Alluwaimi A.M., Smith W.L., Perani L., Cullor J.S., Quantitation of bovine cytokine mRNA in milk cells of healthy cattle by real-time TaqMan® polymerase chain reaction, Vet. Immunol. Immunopathol. 77 (2000) 275-287 [PubMed].
  13. Martin T.R., Recognition of bacterial endotoxin in the lungs, Am. J. Respir. Cell Mol. Biol. 23 (2000) 128-132 [PubMed].
  14. Morath S., Stadelmaier A., Geyer A., Schmidt R.R., Hartung T., Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release, J. Exp. Med. 195 (2002) 1635-1640 [CrossRef] [PubMed].
  15. Nau G.J., Richmond J.F.L., Schlesinger A., Jennings E.G., Lander E.S., Young R.A., Human macrophage activation programs induced by bacterial pathogens, Proc. Natl. Acad. Sci. USA 99 (2002) 1503-1508 [CrossRef] [PubMed].
  16. Nau G.J., Schlesinger A., Richmond J.F.L., Young R.A., Cumulative toll-like receptor activation in human macrophages treated with whole bacteria, J. Immunol. 170 (2003) 5203-5209 [PubMed].
  17. Pfaffl M.W., A new mathematic model for relative quantification in real-time RT-PCR, Nucleic Acids Res. 29 (2001) 2002-2007 [CrossRef].
  18. Re F., Strominger J.L., Toll-like receptors 2 (TLR2) and TLR4 differentially activate human dendritic cells, J. Biol. Chem. 276 (2001) 37692-37699 [CrossRef] [PubMed].
  19. Riollet C., Rainard P., Poultrel B., Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus, Clin. Diagn. Lab. Immunol. 7 (2000) 161-167 [CrossRef] [PubMed].
  20. Riollet C., Rainard P., Poultrel B., Kinetics of cells and cytokines during immune-mediated inflammation in the mammary gland of cows systemically immunized with Staphylococcus aureus $\alpha$-toxin, Inflamm. Res. 49 (2000) 486-496 [CrossRef] [PubMed].
  21. Rouabhia M., Ross G., Pagé N., Chakir J., Interleukin-18 and gamma interferon production by oral epithelial cells in response to exposure to Candida albicans or lipopolysaccharide stimulation, Infect. Immun. 70 (2002) 7073-7080 [CrossRef] [PubMed].
  22. SAS/STAT User's Guide, Version 8, SAS Institution Inc., Cary, NC, 2000.
  23. Schwandner R., Dziarski R., Wesche H., Rothe M., Kirschning C.J., Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2, J. Biol. Chem. 274 (1999) 17406-17409 [CrossRef] [PubMed].
  24. Sutra L., Poutrel B., Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus, J. Med. Microbiol. 40 (1994) 79-89 [PubMed].
  25. Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Takeda K., Akira S., Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components, Immunity 11 (1999) 443-451 [CrossRef] [PubMed].
  26. Wang Y., Zarlenga D.S., Paape M.J., Dahl G.E., Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide, Vet. Immunol. Immunopathol. 86 (2002) 115-124 [PubMed].
  27. Werling D., Jungi T.W., Toll-like receptors linking innate and adaptive immune response, Vet. Immunol. Immunopathol. 91 (2003) 1-12 [PubMed].
  28. Yoshimura A., Lien E., Ingalls R.R., Tuomanen E., Dziarski R., Golenbock D., Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2, J. Immunol. 163 (1999) 1-5 [PubMed].