Free Access
Vet. Res.
Volume 34, Number 4, July-August 2003
Page(s) 413 - 421
How to cite this article Vet. Res. (2003) 413-421
  1. Banks K.L., Michaels F.H., Stimulation and killing of bovine mononuclear leukocytes by bacterial lipopolysaccharide (endotoxin), Am. J. Vet. Res. 46 (1985) 1568-1572 [PubMed].
  2. Bass R.C, Burnett R.J., Neely A.N., Solomkin J.S., Lipopolysaccharide-Binding Proteins, in: Robinson J.P., Babcock G.F. (Eds.), Phagocyte Function: A Guide for Research and Clinical Evaluation, Wiley-Liss publication, 1998, pp. 97-123.
  3. Bazil V., Horejsi V., Baudys M., Kristofova H., Strominutesger J.L., Kostka W., Hilgert I., Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen, Eur. J. Immunol. 16 (1986) 1583-1589 [PubMed].
  4. Bone R.C., Gram-negative sepsis, Background, clinical features, and intervention, Chest 100 (1991) 802-808 [PubMed].
  5. Dentener M.A., Bazil V., Von Asmuth E.J., Ceska M., Buurman W.A., Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor- alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages, J. Immunol. 150 (1993) 2885-2891 [PubMed].
  6. Fong Y., Tracey K.J., Moldawer L.L., Hesse D.G., Manogue K.B., Kenney J.S., Lee A.T., Tuo G.C., Allison A.C., Lowry S.F., Antibodies to cachectin/tumor necrosis factor reduce interleukin 1 beta and interleukin 6 appearance during lethal bacteremia, J. Exp. Med. 170 (1989) 1627-1633 [CrossRef] [PubMed].
  7. Galanos C., Freudenberg M.A., Mechanisms of endotoxin shock and endotoxin hypersensitivity, Immunobiology 187 (1993) 346-356 [PubMed].
  8. Glauser M.P., Zanetti G., Baumgartner J.D., Cohen J., Septic shock: pathogenesis, Lancet 338 (1991) 732-739 [CrossRef] [PubMed].
  9. Haziot A., Chen S., Ferrero E., Low M.G., Silber R., Goyert S.M., The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage, J. Immunol. 141 (1988) 547-552 [PubMed].
  10. Haziot A., Rong G.W., Bazil V., Silver J., Goyert S.M., Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood, J. Immunol. 152 (1994) 5868-5876 [PubMed].
  11. Haziot A., Ferrero E., Lin X.Y, Stewart C.L., Goyert S.M., CD14-deficient mice are exquisitely insensitive to the effects of LPS, Prog. Clin. Biol. Res. 392 (1995) 349-351 [PubMed].
  12. Juan T.S., Kelley M.J., Johnson D.A., Busse L.A., Hailman E., Wright S.D., Lichenstein H.S., Soluble CD14 truncated at amino acid 152 binds lipopolysaccharide (LPS) and enables cellular response to LPS, J. Biol. Chem. 270 (1995) 1382-1387 [CrossRef] [PubMed].
  13. Kenison D.C., Elsasser T.H., Fayer R., Radioimmunoassay for bovine tumor necrosis factor: concentrations and circulating molecular forms in bovine plasma, J. Immunoassay 11 (1990) 177-198 [PubMed].
  14. Kurland J.I., Bockman R., Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages, J. Exp. Med. 147 (1978) 952-957 [CrossRef] [PubMed].
  15. Labeta M.O., Vidal K., Nores J.E., Arias M., Vita N., Morgan B.P., Guillemot J.C., Loyaux D., Ferrara P., Schmid D., Affolter M., Borysiewicz L.K., Donnet-Hughes A., Schiffrin E.J., Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14, J. Exp. Med. 191 (2000) 1807-1812 [CrossRef] [PubMed].
  16. Maliszewski C.R., CD14 and immune response to lipopolysaccharide, Science 252 (1991) 1321-1322 [CrossRef].
  17. Maliszewski C.R., Ball E.D., Graziano R.F., Fanger M.W., Isolation and characterization of My23, a myeloid cell-derived antigen reactive with the monoclonal antibody AML-2-23, J. Immunol. 135 (1985) 1929-1936 [PubMed].
  18. Morrison D.C., Ryan J.F., Bacterial endotoxins and host immune responses, Adv. Immunol. 28 (1979) 293-450 [PubMed].
  19. National Mastitis Council. Current concepts of bovine mastitis. Madison, WI, 4th ed. (1996) 11-12.
  20. Riollet C., Rainard P., Poutrel B., Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus, Clin. Diagn. Lab. Immunol. 7 (2000) 161-167 [CrossRef] [PubMed].
  21. Shuster D.E., Kehrli M.E. Jr, Administration of recombinant human interleukin 1 receptor antagonist during endotoxin-induced mastitis in cows, Am. J. Vet. Res. 56 (1995) 313-320 [PubMed].
  22. Smith K.L., Todhunter D.A., Schoenberger, P.S., Environmental mastitis: cause, prevalence, prevention, J. Dairy Sci. 68 (1985) 1531-1553 [PubMed].
  23. Vanden Heuvel J.P., Tyson F.L., Bell D.A., Construction of recombinant RNA templates for use as internal standards in quantitative RT-PCR, Biotechniques 14 (1993) 395-398 [PubMed].
  24. Vogel S.N., Johnson D., Perera P.Y., Medvedev A., Lariviere L., Qureshi S.T., Malo D., Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant negative mutation, J. Immunol. 162 (1999) 5666-5670 [PubMed].
  25. Wang Y., Zarlenga D.S., Paape M.J., Dahl G.E., Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopoplysaccharide, Vet. Immunol. Immunopathol. 86 (2002) 115-124 [PubMed].
  26. Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R.J., Mathison J.C., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science 249 (1990) 1431-1433 [CrossRef].
  27. Zarlenga D.S., Canals A., Gasbarre L., Method for constructing internal standards for use in competitive PCR, Biotechniques 19 (1995) 324-326 [PubMed].