Free Access
Vet. Res.
Volume 34, Number 3, May-June 2003
Page(s) 307 - 316
How to cite this article Vet. Res. (2003) 307-316
  1. Anderson J.C., The effect of colonization of the mouse mammary gland by Staphylococcus epidermidis on subsequent infection with Staphylococcus aureus or Escherichia coli, J. Comp. Pathol. 88 (1978) 545-553 [CrossRef] [PubMed].
  2. Anderson J.C., The epidemiology and pathogenesis of experimental staphylococcal and coliform mastitis in the mouse, Br. Vet. J. 135 (1979) 163-171 [PubMed].
  3. Bazil V., Horejsi V., Baudys M., Kristofova H., Strominger J.L., Kostka W., Hilgert I., Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen, Eur. J. Immunol. 16 (1986) 1583-1589 [PubMed].
  4. Bramley A.J., Variation in the susceptibility of lactating and non-lactating bovine udders to infection when infused with Escherichia coli, J. Dairy Sci. 79 (1976) 3094-3103.
  5. Carroll E.J., Schalm O.W., Lasmanis J., Experimental coliform (Aerobacter aerogenes) mastitis: characteristics of the endotoxin and its role in pathogenesis, Am. J. Vet. Res. 25 (1964) 720-726 [PubMed].
  6. Cauwels A., Frei K., Sansano S., Fearns C., Ulevitch R., Zimmerli W., Landmann R., The origin and function of soluble CD14 in experimental bacterial meningitis, J. Immunol. 162 (1999) 4762-4772 [PubMed].
  7. Chandler R.L., Experimental bacterial mastitis in the mouse, J. Med. Microbiol. 2 (1970) 273-282.
  8. Dosogne H., Meyer E., Sturk A., van Loon J., Massart-Leën A.M., Burvenich C., Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis, Inflamm. Res. 51 (2002) 201-205 [CrossRef] [PubMed].
  9. Dziarski R., Tapping R.I., Tobias P.S., Binding of bacterial peptidoglycan to CD14, J. Biol. Chem. 273 (1998) 8680-8690 [CrossRef] [PubMed].
  10. Filipp D., Alizadeh-Khiavi K., Richardson C., Palma A., Paredes N., Takeuchi O., Akira S., Julius M., Soluble CD14 enriched in colostrums and milk induces B cell growth and differentiation, Proc. Natl. Acad. Sci. USA 98 (2001) 603-608 [CrossRef] [PubMed].
  11. Glauser M.P., Zanetti G., Baumgartner J.D., Cohen J., Septic shock: pathogenesis, Lancet 338 (1991) 732-739 [CrossRef] [PubMed].
  12. Hailman E., Lichenstein H.S., Wurfel M.M., Miller D.S., Johnson D.A., Kelley M., Busse L.A., Zukowski M.M., Wright S.D., Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14, J. Exp. Med. 179 (1994) 269-277 [CrossRef] [PubMed].
  13. Haziot A., Chen S., Ferrero E., Los M.G., Silber R., Goyert S.M., The monocytes differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage, J. Immunol. 144 (1988) 547-552.
  14. Haziot A., Rong G., Bazil V., Silver J., Goyert S.M., Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-$\alpha$ production by cells in whole blood, J. Immunol. 152 (1994) 5868-5876 [PubMed].
  15. Haziot A., Rong G., Lin X., Silver J., Goyert S.M., Recombinant soluble CD14 prevents mortality in mice treated with endotoxin (lipopolysaccharide), J. Immunol. 154 (1995) 6529-6532 [PubMed].
  16. Haziot A., Ferrero E., Köntgen F., Hijiya N., Yamamoto S., Silver J., Stewart C.L., Goyert S.M., Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice, Immunity 4 (1996) 407-414 [CrossRef] [PubMed].
  17. Ikeda A., Takata M., Taniguchi T., Sekikawa K., Molecular cloning of bovine CD14 gene, J. Vet. Med. Sci. 59 (1997) 715-719 [CrossRef] [PubMed].
  18. Jack R.S., Grunwald U., Stelter F., Workalemahu G., Schutt C., Both membrane-bound and soluble forms of CD14 bind to gram-negative bacteria, Eur. J. Immunol. 25 (1995) 1436-1441 [PubMed].
  19. Kerr D.E., Plaut K., Bramley A.J., Williamson C.M., Lax A.J., Moore K., Wells K.D., Wall R.J., Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice, Nature Biotechnol. 19 (2001) 66-70 [CrossRef].
  20. Klein R.D., Su G.L., Schmidt C., Aminlari A., Steinstraesser L., Alarcon W.H., Zhang H.Y., Wang S.C., Lipopolysaccharide-binding protein accelerates and augments Escherichia coli phagocytosis by alveolar macrophages, J. Surg. Res. 94 (2000) 159-166 [CrossRef] [PubMed].
  21. Labéta M.O., Vidal K., Nores J.E.R., Arias M., Vita N., Morgan B.P., Guillemot J.C., Loyaux D., Ferrara P., Schmid D., Affolter M., Borysiewicz L.K., Donnet-Hughes A., Schiffrin E.J., Innate Recognition of Bacteria in Human Milk Is Mediated by a Milk-derived Highly Expressed Pattern Recognition Receptor, Soluble CD14, J. Exp. Med. 191 (2000) 1807-1812 [CrossRef] [PubMed].
  22. Lee J., Zhao X., Recombinant human inter-leukin-8, but not human interleukin-1$\beta$, induces bovine neutrophil migration in an in vitro co-culture system, Cell Biol. Int. 24 (2000) 889-895 [CrossRef] [PubMed].
  23. Lee J., Zhao X., Paape M.J., Elevated soluble CD14 in bovine milk after intramammary challenge with Escherichia coli lipopolysaccharide, FASEB J. 16 (2002) A720.
  24. Long E., Capuco A.V., Wood D.L., Sonstegard T., Tomita G., Paape M.J., Zhao X., Escherichia coli induces apoptosis and proliferation of mammary cells, Cell Death Differ. 8 (2001) 808-816 [CrossRef] [PubMed].
  25. Luo G., Niesel D., Shaban R., Grimm E., Klimpel G., Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulent properties, Infect. Immun. 61 (1993) 830-835 [PubMed].
  26. Martin T.R., Recognition of bacterial endotoxin in the lungs, Am. J. Respir. Cell Mol. Biol. 23 (2000) 128-132 [PubMed].
  27. Moore K.J., Andersson L.P., Ingalls R.R., Monks B.G., Li R., Arnaout M.A., Golenbock D.T., Freeman M.W., Divergent response to LPS and bacteria in CD14-deficient murine macrophages, J. Immunol. 165 (2000), 4272-4280.
  28. National Mastitis Council, Current Concepts of Bovine Mastitis, Fourth Ed., National Mastitis Council, Madison, WI, 1996.
  29. Nguyen D.A., Beeman N., Lewis M., Schaack J., Neville M.C., Intraductal injection into the mouse mammary gland, J. Mammary Gland Biol. Neoplasia. (in press).
  30. Paape M.J., Schultze W.D., Desjardins C., Miller R.H., Plasma corticosteroids, circulating leukocyte and milk somatic cell responses to Escherichia coli endotoxin-induced mastitis, Proc. Soc. Exp. Biol. Med. 145 (1974) 533-539 [PubMed].
  31. Paape M.J., Lilius E.M., Wiitanen P.A., Kontio M.P., Miller R.H., Intramammary defense against infections induced by Escherichia coli in cows, Am. J. Vet. Res. 57 (1996) 477-482 [PubMed].
  32. Porat R., Clark B., Wolff S., Dinarello C., Enhancement of growth of virulent strains of Escherichia coli by interleukin-1, Science 254 (1991) 430-432 [CrossRef].
  33. Pugin J., Schürer-Maly C., Leturcq D., Moriarty A., Ulevitch R.J., Tobias P.S., Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14, Proc. Natl. Acad. Sci. USA 90 (1993) 2744-2748 [CrossRef] [PubMed].
  34. SAS/STAT User's Guide, Version 8, SAS Institute Inc., Cary, NC, 2000.
  35. Schiff D.E., Kline L., Soldau K., Lee J.D., Pugin J., Tobias P.S., Ulevitch R.J., Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism, J. Leukoc. Biol. 62 (1997) 786-794 [PubMed].
  36. Shuster D.E., Kehrli M.E., Stevens M.G., Cytokine production during endotoxin-induced mastitis in lactating dairy cows, Am. J. Vet. Res. 54 (1993) 80-85 [PubMed].
  37. Shuster D.E., Lee E.K., Kehrli M.E., Bacterial growth, inflammatory cytokine production and neutrophil recruitment during coliform mastitis in cows within then days after calving, compared with cows at midlactation, Am. J. Vet. Res. 57 (1996) 1569-1575 [PubMed].
  38. Smith K.L., Todhunter D.A., Schoenberger P.S., Environmental mastitis: cause, prevalence, prevention, J. Dairy Sci. 68 (1985) 1531-1553 [PubMed].
  39. Stelter F., Witt S., Fürll B., Jack R.S., Hartung T., Schütt C., Different efficacy of soluble CD14 treatment in high- and low- dose LPS models, Eur. J. Clin. Invest. 28 (1998) 205-213 [PubMed].
  40. Waage A., Brandtaeg P., Halstensen A., Kierulf P., Espevik T., The complex pattern of cytokines in serum from patients with meningococcal septic shock: association between Interleukin 6, Interleukin 1, and fatal outcome, J. Exp. Med. 169 (1989) 333-338 [CrossRef] [PubMed].
  41. Wang Y., Zarlenga D.S., Paape M.J., Dahl G.E., Recombinant bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide, Vet. Immunol. Immunopathol, 86 (2002) 115-124.
  42. Woltmann A., Gangloff S.C., Bruch H., Rietschel E.T., Solbach W., Silver J., Goyert S.M., Reduced bacterial dissemination and liver injury in CD14-deficient mice following a chronic abscess-forming peritonitis induced by Bacteroides fragilis, Med. Microbiol. Immunol. 187 (1999) 149-156 [CrossRef] [PubMed].
  43. Wright S.D., Ramos R., Hermanowski-Vosatka A., Rockwell P., Detmers P.A., Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CD14, J. Exp. Med. 173 (1991) 1281-1286 [CrossRef] [PubMed].
  44. Wurfel M.M., Hailman E., Wright S.D., Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein, J. Exp. Med. 181 (1995) 1743-1754 [CrossRef] [PubMed].
  45. Zughaier S.M., Ryley H.C., Jackson S.K., Lipopolysaccharide (LPS) from Burkholderia cepacia is more active than LPS from Pseudomonas aeruginosa and Stenotrophomonas maltophilia in stimulating tumor necrosis factor alpha from human monocytes, Infect. Immun. 67 (1999) 1505-1507 [PubMed].