Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Flea infestation of rodent and their community structure in frequent and non-frequent plague outbreak areas in Mbulu district, northern Tanzania

Stella T. Kessy, RhodesH. Makundi, Apia W. Massawe and Alfan A. Rija
International Journal for Parasitology: Parasites and Wildlife 23 100921 (2024)
https://doi.org/10.1016/j.ijppaw.2024.100921

Review of genotyping methods for Yersinia pestis in Madagascar

Lovasoa Nomena Randriantseheno, Voahangy Andrianaivoarimanana, Javier Pizarro-Cerdá, David M. Wagner, Minoarisoa Rajerison and Vladimir L. Motin
PLOS Neglected Tropical Diseases 18 (6) e0012252 (2024)
https://doi.org/10.1371/journal.pntd.0012252

Population dynamics of the Multimammate rat (Mastomys natalensis) and Makundi’s brush fur rat (Lophuromys makundii) and their implications in disease persistence in Mbulu District, Tanzania

Stella T. Kessy, Christopher Sabuni, Apia W. Massawe, Rhodes Makundi and Alfan A. Rija
European Journal of Wildlife Research 70 (2) (2024)
https://doi.org/10.1007/s10344-024-01773-8

Flea Burden on Rodents and Its Associated Determinants in Plague‐Endemic Localities of Karatu District, Tanzania: A Cross‐Sectional Study

Joshua Reuben Jakoniko, Apia Massawe, Elisa Daniel Mwega and Stella Thadeus Kessy
Public Health Challenges 3 (2) (2024)
https://doi.org/10.1002/puh2.201

Intraspecific diversity of Meriones persicus (Rodentia; Gerbillinae), the main plague reservoir in Iran, and its connection to enzootic plague in Iran

Ahmad MAHMOUDI, Ehsan MOSTAFAVI and Boris KRYŠTUFEK
Integrative Zoology (2024)
https://doi.org/10.1111/1749-4877.12835

Ubiquitous Existence of Cation-Proton Antiporter and its Structurefunction Interplay: A Clinical Prospect

Manish Dwivedi and Sowdhamini Mahendiran
Current Protein & Peptide Science 24 (1) 43 (2023)
https://doi.org/10.2174/1389203724666221114093235

Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania

Lavinia Haikukutu, Japhet R. Lyaku, Charles M. Lyimo, Seth J. Eiseb, Rhodes H. Makundi, Ayodeji Olayemi, Kerstin Wilhelm, Nadine Müller-Klein, Dominik W. Schmid, Ramona Fleischer and Simone Sommer
Immunogenetics 75 (6) 517 (2023)
https://doi.org/10.1007/s00251-023-01323-7

Genomic epidemiological analysis of county-scale Yersinia pestis spread pattern over 50 years in a Southwest Chinese prefecture

Jingliang Qin, Liyuan Shi, Yarong Wu, et al.
PLOS Neglected Tropical Diseases 17 (8) e0011527 (2023)
https://doi.org/10.1371/journal.pntd.0011527

Infectious Diseases along the Silk Roads

Günter A. Schaub and Patric U. B. Vogel
Parasitology Research Monographs, Infectious Diseases along the Silk Roads 17 83 (2023)
https://doi.org/10.1007/978-3-031-35275-1_7

Genomic diversity of Yersinia pestis from Yunnan Province, China, implies a potential common ancestor as the source of two plague epidemics

Jingliang Qin, Yarong Wu, Liyuan Shi, Xiujuan Zuo, Xianglilan Zhang, Xiuwei Qian, Hang Fan, Yan Guo, Mengnan Cui, Haipeng Zhang, Fengyi Yang, Jinjiao Kong, Yajun Song, Ruifu Yang, Peng Wang and Yujun Cui
Communications Biology 6 (1) (2023)
https://doi.org/10.1038/s42003-023-05186-2

Rodent abundance, diversity and community structure in a bubonic plague endemic area, northern Tanzania

Stella T. Kessy, Rhodes H. Makundi, Christopher Sabuni, Apia W. Massawe and Alfan A. Rija
Mammalia 87 (5) 488 (2023)
https://doi.org/10.1515/mammalia-2023-0012

A Role for Early-Phase Transmission in the Enzootic Maintenance of Plague

Cedar L. Mitchell, Ashley R. Schwarzer, Adélaïde Miarinjara, et al.
PLOS Pathogens 18 (12) e1010996 (2022)
https://doi.org/10.1371/journal.ppat.1010996

Combining deep sequencing and conventional molecular approaches reveals broad diversity and distribution of fleas and Bartonella in rodents and shrews from Arctic and Subarctic ecosystems

Kayla J. Buhler, Champika Fernando, Janet E. Hill, et al.
Parasites & Vectors 15 (1) (2022)
https://doi.org/10.1186/s13071-022-05446-w

Spatiotemporal Variations of Plague Risk in the Tibetan Plateau from 1954–2016

Xing Yuan, Linsheng Yang, Hairong Li and Li Wang
Biology 11 (2) 304 (2022)
https://doi.org/10.3390/biology11020304

No evidence for enzootic plague within black‐tailed prairie dog (Cynomys ludovicianus) populations

Rebecca E. COLMAN, R. Jory BRINKERHOFF, Joseph D. BUSCH, et al.
Integrative Zoology 16 (6) 834 (2021)
https://doi.org/10.1111/1749-4877.12546

Effects of experimental flea removal and plague vaccine treatments on survival of northern Idaho ground squirrels and two coexisting sciurids

Amanda R. Goldberg, Courtney J. Conway and Dean E. Biggins
Global Ecology and Conservation 26 e01489 (2021)
https://doi.org/10.1016/j.gecco.2021.e01489

Plague Prevention and Therapy: Perspectives on Current and Future Strategies

Raysa Rosario-Acevedo, Sergei S. Biryukov, Joel A. Bozue and Christopher K. Cote
Biomedicines 9 (10) 1421 (2021)
https://doi.org/10.3390/biomedicines9101421

Infections of cats with blood mycoplasmas in various contexts

Dana Lobová, Jarmila Konvalinová, Iveta Bedáňová, Zita Filipejová and Dobromila Molinková
Acta Veterinaria Brno 90 (2) 211 (2021)
https://doi.org/10.2754/avb202190020211

Plague Transmission from Corpses and Carcasses

Sophie Jullien, Nipun Lakshitha de Silva and Paul Garner
Emerging Infectious Diseases 27 (8) 2033 (2021)
https://doi.org/10.3201/eid2708.200136

Ectoparasites of some wild rodents /shrews captured from Scrub typhus reported areas in Tamil Nadu, India

Paulraj Philip Samuel, Renu Govindarajan, Ranganathan Krishnamoorthi and Jaganathasamy Nagaraj
International Journal of Acarology 47 (3) 218 (2021)
https://doi.org/10.1080/01647954.2021.1887932

Putative Horizontally Acquired Genes, Highly Transcribed during Yersinia pestis Flea Infection, Are Induced by Hyperosmotic Stress and Function in Aromatic Amino Acid Metabolism

Luary C. Martínez-Chavarría, Janelle Sagawa, Jessica Irons, et al.
Journal of Bacteriology 202 (11) (2020)
https://doi.org/10.1128/JB.00733-19

Vector-Borne Pathogens in Ectoparasites Collected from High-Elevation Pika Populations

R. Jory Brinkerhoff, Hilary S. Rinsland, Shingo Sato, Soichi Maruyama and Chris Ray
EcoHealth 17 (3) 333 (2020)
https://doi.org/10.1007/s10393-020-01495-8

The Diverse Roles of the Global Transcriptional Regulator PhoP in the Lifecycle of Yersinia pestis

Hana S. Fukuto, Gloria I. Viboud and Viveka Vadyvaloo
Pathogens 9 (12) 1039 (2020)
https://doi.org/10.3390/pathogens9121039

Prospects for the Synthesis of Ecological and Molecular-Genetic Approaches to the Problem of the Speciation of the Plague Microbe Yersinia pestis

V. V. Suntsov
Biology Bulletin Reviews 10 (4) 324 (2020)
https://doi.org/10.1134/S2079086420040088

An Evaluation of the Flea Index as a Predictor of Plague Epizootics in the West Nile Region of Uganda

Paul S Mead, Kiersten J Kugeler, Titus Apangu, et al.
Journal of Medical Entomology 57 (3) 893 (2020)
https://doi.org/10.1093/jme/tjz248

To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia

Caroline D. Keroack, Brendan Elsworth and Manoj T. Duraisingh
International Journal for Parasitology 49 (2) 153 (2019)
https://doi.org/10.1016/j.ijpara.2018.09.005

Emilie Lejal, Maud Marsot, Karine Chalvet-Monfray, Jean-François Cosson, Sara Moutailler, Muriel Vayssier-Taussat and Thomas Pollet
(2019)
https://doi.org/10.1101/597013

Relationship of the Representatives of Eight Genera of Siphonaptera Order and Yersinia Pestis from Tuva Natural Plague Focus

L. P. Bazanova and A. Yu. Nikitin
Epidemiology and Vaccine Prevention 17 (3) 32 (2018)
https://doi.org/10.31631/2073-3046-2018-17-3-32-37

Yersinia pestisSurvival and Replication in Potential Ameba Reservoir

David W. Markman, Michael F. Antolin, Richard A. Bowen, et al.
Emerging Infectious Diseases 24 (2) 294 (2018)
https://doi.org/10.3201/eid2402.171065

Rat Fall Surveillance Coupled with Vector Control and Community Education as a Plague Prevention Strategy in the West Nile Region, Uganda

Karen A. Boegler, Linda A. Atiku, Russell E. Enscore, et al.
The American Journal of Tropical Medicine and Hygiene 98 (1) 238 (2018)
https://doi.org/10.4269/ajtmh.17-0502

Simple multi-scale modeling of the transmission dynamics of the 1905 plague epidemic in Bombay

Bruce Pell, Tin Phan, Erica M. Rutter, Gerardo Chowell and Yang Kuang
Mathematical Biosciences 301 83 (2018)
https://doi.org/10.1016/j.mbs.2018.04.003

Combating Multidrug-Resistant Pathogens with Host-Directed Nonantibiotic Therapeutics

Jourdan A. Andersson, Jian Sha, Michelle L. Kirtley, et al.
Antimicrobial Agents and Chemotherapy 62 (1) (2018)
https://doi.org/10.1128/AAC.01943-17

A Bead-Based Flow Cytometric Assay for Monitoring Yersinia pestis Exposure in Wildlife

Jeffrey C. Chandler, Laurie A. Baeten, Doreen L. Griffin, et al.
Journal of Clinical Microbiology 56 (7) (2018)
https://doi.org/10.1128/JCM.00273-18

Exposure to Yersinia pestis increases resistance to plague in black rats and modulates transmission in Madagascar

Voahangy Andrianaivoarimanana, Minoarisoa Rajerison and Ronan Jambou
BMC Research Notes 11 (1) (2018)
https://doi.org/10.1186/s13104-018-3984-3

Arthropod Borne Diseases

Tereza Cristina Leal-Balbino, Maria Betânia Melo de Oliveira, Maria Paloma Silva de Barros, Marise Sobreira and Vladimir da Mota Silveira-Filho
Arthropod Borne Diseases 155 (2017)
https://doi.org/10.1007/978-3-319-13884-8_11

The Effect of Seasonal Weather Variation on the Dynamics of the Plague Disease

Rigobert C. Ngeleja, Livingstone S. Luboobi and Yaw Nkansah-Gyekye
International Journal of Mathematics and Mathematical Sciences 2017 1 (2017)
https://doi.org/10.1155/2017/5058085

HmsC Controls Yersinia pestis Biofilm Formation in Response to Redox Environment

Gai-Xian Ren, Xiao-Peng Guo and Yi-Cheng Sun
Frontiers in Cellular and Infection Microbiology 7 (2017)
https://doi.org/10.3389/fcimb.2017.00355

Flea and Small Mammal Species Composition in Mixed-Grass Prairies: Implications for the Maintenance ofYersinia pestis

Lauren P. Maestas and Hugh B. Britten
Vector-Borne and Zoonotic Diseases 17 (7) 467 (2017)
https://doi.org/10.1089/vbz.2016.2069

Yersinia pestis Resists Predation by Acanthamoeba castellanii and Exhibits Prolonged Intracellular Survival

Javier A. Benavides-Montaño, Viveka Vadyvaloo and Janet L. Schottel
Applied and Environmental Microbiology 83 (13) (2017)
https://doi.org/10.1128/AEM.00593-17

Cross-scale modeling of a vector-borne disease, from the individual to the metapopulation: The seasonal dynamics of sylvatic plague in Kazakhstan

Vincent Laperrière, Katharina Brugger and Franz Rubel
Ecological Modelling 342 34 (2016)
https://doi.org/10.1016/j.ecolmodel.2016.09.023

Plague cycles in two rodent species from China: dry years might provide context for epizootics in wet years

David A. Eads, Dean E. Biggins, Lei Xu and Qiyong Liu
Ecosphere 7 (10) (2016)
https://doi.org/10.1002/ecs2.1495

Rickettsia(Rickettsiales: Rickettsiaceae) Vector Biodiversity in High Altitude Atlantic Forest Fragments Within a Semiarid Climate: A New Endemic Area of Spotted-Fever in Brazil

Leonardo Moerbeck, Vinícius F. Vizzoni, Erik Machado-Ferreira, et al.
Journal of Medical Entomology 53 (6) 1458 (2016)
https://doi.org/10.1093/jme/tjw121

Review: A review on classical and atypical scrapie in caprine: Prion protein gene polymorphisms and their role in the disease

L. Curcio, C. Sebastiani, P. Di Lorenzo, E. Lasagna and M. Biagetti
animal 10 (10) 1585 (2016)
https://doi.org/10.1017/S1751731116000653

Bartonellaspp. in Small Mammals, Benin

Aarón Martin-Alonso, Gualbert Houemenou, Estefanía Abreu-Yanes, et al.
Vector-Borne and Zoonotic Diseases 16 (4) 229 (2016)
https://doi.org/10.1089/vbz.2015.1838

Detection of aYersinia pestisgene homologue in rodent samples

Timothy A. Giles, Alex D. Greenwood, Kyriakos Tsangaras, et al.
PeerJ 4 e2216 (2016)
https://doi.org/10.7717/peerj.2216

Sympatric speciation of the plague microbe Yersinia pestis: Monohostal specialization in the host–parasite marmot–flea (Marmota sibirica–Oropsylla silantiewi) system

V. V. Suntsov
Biology Bulletin 43 (2) 87 (2016)
https://doi.org/10.1134/S1062359016010155

Evaluation of Yersinia pestis Transmission Pathways for Sylvatic Plague in Prairie Dog Populations in the Western U.S.

Katherine L. D. Richgels, Robin E. Russell, Gebbiena M. Bron and Tonie E. Rocke
EcoHealth 13 (2) 415 (2016)
https://doi.org/10.1007/s10393-016-1133-9

Infection Prevalence, Bacterial Loads, and Transmission Efficiency inOropsylla montana(Siphonaptera: Ceratophyllidae) One Day After Exposure to Varying Concentrations ofYersinia pestisin Blood

Karen A. Boegler, Christine B. Graham, Tammi L. Johnson, John A. Montenieri and Rebecca J. Eisen
Journal of Medical Entomology 53 (3) 674 (2016)
https://doi.org/10.1093/jme/tjw004

Yersinia pestis-Host Immune Cells Interactions at Early Events During Bubonic Plague Infection

Luary C. Martínez-Chavarría
Current Tropical Medicine Reports 3 (2) 51 (2016)
https://doi.org/10.1007/s40475-016-0071-5

Parasite spreading in spatial ecological multiplex networks

Massimo Stella, Cecilia S. Andreazzi, Sanja Selakovic, Alireza Goudarzi and Alberto Antonioni
Journal of Complex Networks cnw028 (2016)
https://doi.org/10.1093/comnet/cnw028

Comparative Proteomic Studies of Yersinia pestis Strains Isolated from Natural Foci in the Republic of Georgia

Maia Nozadze, Ekaterine Zhgenti, Maia Meparishvili, et al.
Frontiers in Public Health 3 (2015)
https://doi.org/10.3389/fpubh.2015.00239

Flea-Associated Bacterial Communities across an Environmental Transect in a Plague-Endemic Region of Uganda

Ryan Thomas Jones, Jeff Borchert, Rebecca Eisen, et al.
PLOS ONE 10 (10) e0141057 (2015)
https://doi.org/10.1371/journal.pone.0141057

Increased Mycoplasma hyopneumoniae Disease Prevalence in Domestic Hybrids Among Free-Living Wild Boar

Daniel J. Goedbloed, Pim van Hooft, Walburga Lutz, et al.
EcoHealth 12 (4) 571 (2015)
https://doi.org/10.1007/s10393-015-1062-z

CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA

Stephan P. Willias, Sadhana Chauhan, Chien-Chi Lo, et al.
PLOS ONE 10 (8) e0135481 (2015)
https://doi.org/10.1371/journal.pone.0135481

The Role of Early-Phase Transmission in the Spread ofYersinia pestis

Rebecca J. Eisen, David T. Dennis and Kenneth L. Gage
Journal of Medical Entomology 52 (6) 1183 (2015)
https://doi.org/10.1093/jme/tjv128

Arthropod-Spiroplasma relationship in the genomic era

L. M. Bolanos, L. E. Servin-Garciduenas and E. Martinez-Romero
FEMS Microbiology Ecology 91 (2) 1 (2015)
https://doi.org/10.1093/femsec/fiu008

Seasonal fluctuations of small mammal and flea communities in a Ugandan plague focus: evidence to implicate Arvicanthis niloticus and Crocidura spp. as key hosts in Yersinia pestis transmission

Sean M Moore, Andrew Monaghan, Jeff N Borchert, et al.
Parasites & Vectors 8 (1) 11 (2015)
https://doi.org/10.1186/s13071-014-0616-1

Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

David A. Eads and Dean E. Biggins
Conservation Biology 29 (4) 1086 (2015)
https://doi.org/10.1111/cobi.12498

Single-Nucleotide Polymorphisms Reveal Spatial Diversity Among Clones ofYersinia pestisDuring Plague Outbreaks in Colorado and the Western United States

Jennifer L. Lowell, Michael F. Antolin, Gary L. Andersen, et al.
Vector-Borne and Zoonotic Diseases 15 (5) 291 (2015)
https://doi.org/10.1089/vbz.2014.1714

Identification of Risk Factors for Plague in the West Nile Region of Uganda

Rebecca J. Eisen, Russell E. Enscore, Emily Zielinski-Gutierrez, et al.
The American Journal of Tropical Medicine and Hygiene 90 (6) 1047 (2014)
https://doi.org/10.4269/ajtmh.14-0035

Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae)

Tammi L. Johnson, B. Joseph Hinnebusch, Karen A. Boegler, et al.
Microbiology 160 (11) 2517 (2014)
https://doi.org/10.1099/mic.0.082123-0

Detection of Yersinia pestis in Environmental and Food Samples by Intact Cell Immunocapture and Liquid Chromatography–Tandem Mass Spectrometry

Jérôme Chenau, François Fenaille, Stéphanie Simon, et al.
Analytical Chemistry 86 (12) 6144 (2014)
https://doi.org/10.1021/ac501371r

Yersinia pestis Requires the 2-Component Regulatory System OmpR-EnvZ to Resist Innate Immunity During the Early and Late Stages of Plague

A. Reboul, N. Lemaitre, M. Titecat, et al.
Journal of Infectious Diseases 210 (9) 1367 (2014)
https://doi.org/10.1093/infdis/jiu274

HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis

Gai‐Xian Ren, Hai‐Qin Yan, Hui Zhu, Xiao‐Peng Guo and Yi‐Cheng Sun
Environmental Microbiology 16 (4) 1202 (2014)
https://doi.org/10.1111/1462-2920.12323

The in vivo extracellular life of facultative intracellular bacterial parasites: Role in pathogenesis

Manuel T. Silva and Nazaré T. Silva Pestana
Immunobiology 218 (3) 325 (2013)
https://doi.org/10.1016/j.imbio.2012.05.011

Effects of Low-Temperature Flea Maintenance on the Transmission ofYersinia pestisbyOropsylla montana

Shanna K. Williams, Anna M. Schotthoefer, John A. Montenieri, et al.
Vector-Borne and Zoonotic Diseases 13 (7) 468 (2013)
https://doi.org/10.1089/vbz.2012.1017

Development of antibodies after foot and mouth disease vaccination in pigs

Gil-Ho Ahn, Jin-Gyu Bae, Kwang Jung, et al.
Korean Journal of Veterinary Service 36 (1) 15 (2013)
https://doi.org/10.7853/kjvs.2013.36.1.15

Evolution and Virulence Contributions of the Autotransporter Proteins YapJ and YapK of Yersinia pestis CO92 and Their Homologs in Y. pseudotuberculosis IP32953

Jonathan D. Lenz, Brenda R. S. Temple, Virginia L. Miller and J. B. Bliska
Infection and Immunity 80 (10) 3693 (2012)
https://doi.org/10.1128/IAI.00529-12

Climate Predictors of the Spatial Distribution of Human Plague Cases in the West Nile Region of Uganda

Katherine MacMillan, Rebecca J. Eisen, Andrew J. Monaghan, et al.
The American Journal of Tropical Medicine and Hygiene 86 (3) 514 (2012)
https://doi.org/10.4269/ajtmh.2012.11-0569

Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus

Rebecca J. Eisen, Jeff N. Borchert, Joseph T. Mpanga, et al.
PLoS ONE 7 (4) e35598 (2012)
https://doi.org/10.1371/journal.pone.0035598

Local persistence and extinction of plague in a metapopulation of great gerbil burrows, Kazakhstan

B.V. Schmid, M. Jesse, L.I. Wilschut, H. Viljugrein and J.A.P. Heesterbeek
Epidemics 4 (4) 211 (2012)
https://doi.org/10.1016/j.epidem.2012.12.003

Evaluation of the Infectiousness to Mice of Soil Contaminated with Yersinia pestis-Infected Blood

Karen A. Boegler, Christine B. Graham, John A. Montenieri, et al.
Vector-Borne and Zoonotic Diseases 12 (11) 948 (2012)
https://doi.org/10.1089/vbz.2012.1031

Serological survey of African horse sickness in selected districts of Jimma zone, Southwestern Ethiopia

Molalegne Bitew, Ashenafi Andargie, Mihreteab Bekele, et al.
Tropical Animal Health and Production 43 (8) 1543 (2011)
https://doi.org/10.1007/s11250-011-9839-8

Infecção por Yersinia pestis, no Estado da Bahia: controle efetivo ou silêncio epidemiológico?

Ramon da Costa Saavedra and Juarez Pereira Dias
Revista da Sociedade Brasileira de Medicina Tropical 44 (2) 223 (2011)
https://doi.org/10.1590/S0037-86822011005000008

Emergence, spread, persistence and fade-out of sylvatic plague in Kazakhstan

L. Heier, G. O. Storvik, S. A. Davis, et al.
Proceedings of the Royal Society B: Biological Sciences 278 (1720) 2915 (2011)
https://doi.org/10.1098/rspb.2010.2614

Landscape and Residential Variables Associated with Plague-Endemic Villages in the West Nile Region of Uganda

Katherine MacMillan, Gerald Amatre, Nackson Babi, et al.
The American Journal of Tropical Medicine and Hygiene 84 (3) 435 (2011)
https://doi.org/10.4269/ajtmh.2011.10-0571

Differential Control of Yersinia pestis Biofilm Formation In Vitro and in the Flea Vector by Two c-di-GMP Diguanylate Cyclases

Yi-Cheng Sun, Alexandra Koumoutsi, Clayton Jarrett, et al.
PLoS ONE 6 (4) e19267 (2011)
https://doi.org/10.1371/journal.pone.0019267