The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Sophie Rossi , Marc Artois , Dominique Pontier , Catherine Crucière , Jean Hars , Jacques Barrat , Xavier Pacholek , Emmanuelle Fromont
Vet. Res., 36 1 (2005) 27-42
This article has been cited by the following article(s):
36 articles
Landscape elements affecting the ingestion of oral vaccine against classical swine fever in wild boar
Tomohiko Endo, Shigeki Hirata, Yoko Hayama, Yuuji Kodera and Masahiko Takeuchi European Journal of Wildlife Research 69 (5) (2023) https://doi.org/10.1007/s10344-023-01733-8
The Role of Wildlife and Pests in the Transmission of Pathogenic Agents to Domestic Pigs: A Systematic Review
Iryna Makovska, Pankaj Dhaka, Ilias Chantziaras, Joana Pessoa and Jeroen Dewulf Animals 13 (11) 1830 (2023) https://doi.org/10.3390/ani13111830
Measuring impact of vaccination among wildlife: The case of bait vaccine campaigns for classical swine fever epidemic among wild boar in Japan
Ryota Matsuyama, Takehisa Yamamoto, Yoko Hayama, Ryosuke Omori and Kim M. Pepin PLOS Computational Biology 18 (10) e1010510 (2022) https://doi.org/10.1371/journal.pcbi.1010510
Estimation of R0 for the Spread of the First ASF Epidemic in Italy from Fresh Carcasses
Federica Loi, Daria Di Sabatino, Ileana Baldi, Sandro Rolesu, Vincenzo Gervasi, Vittorio Guberti and Stefano Cappai Viruses 14 (10) 2240 (2022) https://doi.org/10.3390/v14102240
Epidemiological analysis of classical swine fever in wild boars in Japan
Yumiko Shimizu, Yoko Hayama, Yoshinori Murato, et al. BMC Veterinary Research 17 (1) (2021) https://doi.org/10.1186/s12917-021-02891-0
Serological monitoring of brucellosis among wild boars in Ukraine during 2019–2020
H. Aliekseieva, A. Pyskun, I. Piankivska, O. Polishchuk and H. Mietolapova Naukovij vìsnik veterinarnoï medicini (2 (168)) 49 (2021) https://doi.org/10.33245/2310-4902-2021-168-2-49-56
Next‐generation serology: integrating cross‐sectional and capture–recapture approaches to infer disease dynamics
Amandine Gamble, Romain Garnier, Thierry Chambert, Olivier Gimenez and Thierry Boulinier Ecology 101 (2) (2020) https://doi.org/10.1002/ecy.2923
Dynamics of Aujeszky's disease virus infection in wild boar in enzootic scenarios
Laia Casades‐Martí, David González‐Barrio, Lara Royo‐Hernández, Iratxe Díez‐Delgado and Francisco Ruiz‐Fons Transboundary and Emerging Diseases 67 (1) 388 (2020) https://doi.org/10.1111/tbed.13362
Seasonal host life‐history processes fuel disease dynamics at different spatial scales
Cédric Scherer, Viktoriia Radchuk, Christoph Staubach, Sophie Müller, Niels Blaum, Hans‐Hermann Thulke, Stephanie Kramer‐Schadt and Ann Tate Journal of Animal Ecology 88 (11) 1812 (2019) https://doi.org/10.1111/1365-2656.13070
Serological survey in wild boar (Sus scrofa) in Switzerland and other European countries: Sarcoptes scabiei may be more widely distributed than previously thought
Chloé Haas, Francesco C. Origgi, Sophie Rossi, et al. BMC Veterinary Research 14 (1) (2018) https://doi.org/10.1186/s12917-018-1430-3
A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment
Vienna R. Brown and Sarah N. Bevins Frontiers in Veterinary Science 5 (2018) https://doi.org/10.3389/fvets.2018.00031
A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans
F. Ruiz-Fons Transboundary and Emerging Diseases 64 (1) 68 (2017) https://doi.org/10.1111/tbed.12369
Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals
Alienor L.M. Chauvenet, Robin M.A. Gill, Graham C. Smith, Alastair I. Ward and Giovanna Massei Ecological Modelling 350 79 (2017) https://doi.org/10.1016/j.ecolmodel.2017.02.007
Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir
Dong Uk Lee, Taeyong Kwon, Sang H. Je, et al. Veterinary Microbiology 192 90 (2016) https://doi.org/10.1016/j.vetmic.2016.07.003
How to survey classical swine fever in wild boar (Sus scrofa) after the completion of oral vaccination? Chasing away the ghost of infection at different spatial scales
Thibault Saubusse, Jean-Daniel Masson, Mireille Le Dimma, et al. Veterinary Research 47 (1) (2016) https://doi.org/10.1186/s13567-015-0289-6
Controlling of CSFV in European wild boar using oral vaccination: a review
Sophie Rossi, Christoph Staubach, Sandra Blome, et al. Frontiers in Microbiology 6 (2015) https://doi.org/10.3389/fmicb.2015.01141
A novel epidemiological model to better understand and predict the observed seasonal spread of Pestivirus in Pyrenean chamois populations
Gaël Beaunée, Emmanuelle Gilot-Fromont, Mathieu Garel and Pauline Ezanno Veterinary Research 46 (1) (2015) https://doi.org/10.1186/s13567-015-0218-8
Molecular tracing of classical swine fever viruses isolated from wild boars and pigs in France from 2002 to 2011
Gaëlle Simon, Mireille Le Dimna, Marie-Frédérique Le Potier and Françoise Pol Veterinary Microbiology 166 (3-4) 631 (2013) https://doi.org/10.1016/j.vetmic.2013.06.032
Efficiency of spatio-temporal vaccination regimes in wildlife populations under different viral constraints
Martin Lange, Stephanie Kramer-Schadt and Hans-Hermann Thulke Veterinary Research 43 (1) 37 (2012) https://doi.org/10.1186/1297-9716-43-37
Controlling disease outbreaks in wildlife using limited culling: modelling classical swine fever incursions in wild pigs in Australia
Brendan D Cowled, M Graeme Garner, Katherine Negus and Michael P Ward Veterinary Research 43 (1) (2012) https://doi.org/10.1186/1297-9716-43-3
Detection of antibodies against classical swine fever virus in fecal samples from wild boar
Sang won Seo, Sun young Sunwoo, Bang hoon Hyun and Young S. Lyoo Veterinary Microbiology 161 (1-2) 218 (2012) https://doi.org/10.1016/j.vetmic.2012.07.010
Classical Swine Fever (Hog Cholera): Review of Aspects Relevant to Control
M.-L. Penrith, W. Vosloo and C. Mather Transboundary and Emerging Diseases 58 (3) 187 (2011) https://doi.org/10.1111/j.1865-1682.2011.01205.x
Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain
Mariana Boadella, Christian Gortazar, Pelayo Acevedo, et al. European Journal of Wildlife Research 57 (4) 697 (2011) https://doi.org/10.1007/s10344-011-0550-x
New Insights on the Management of Wildlife Diseases Using Multi-State Recapture Models: The Case of Classical Swine Fever in Wild Boar
Sophie Rossi, Carole Toigo, Jean Hars, et al. PLoS ONE 6 (9) e24257 (2011) https://doi.org/10.1371/journal.pone.0024257
The effect of tissue degradation on detection of infectious virus and viral RNA to diagnose classical swine fever virus
Eefke Weesendorp, Esther M. Willems and Willie L.A. Loeffen Veterinary Microbiology 141 (3-4) 275 (2010) https://doi.org/10.1016/j.vetmic.2009.09.028
Preventive vaccination contributes to control classical swine fever in wild boar (Sus scrofa sp.)
S. Rossi, F. Pol, B. Forot, et al. Veterinary Microbiology 142 (1-2) 99 (2010) https://doi.org/10.1016/j.vetmic.2009.09.050
Individual variations in infectiousness explain long‐term disease persistence in wildlife populations
Stephanie Kramer‐Schadt, Néstor Fernández, Dirk Eisinger, Volker Grimm and Hans‐Hermann Thulke Oikos 118 (2) 199 (2009) https://doi.org/10.1111/j.1600-0706.2008.16582.x
Control and eradication of Classic Swine Fever in wild boar
EFSA Journal 7 (1) 932 (2009) https://doi.org/10.2903/j.efsa.2009.932
A stochastic model to quantify the risk of introduction of classical swine fever virus through import of domestic and wild boars
B. MARTÍNEZ-LÓPEZ, A. M. PEREZ and J. M. SÁNCHEZ-VIZCAÍNO Epidemiology and Infection 137 (10) 1505 (2009) https://doi.org/10.1017/S0950268808001623
Animal health safety of fresh meat derived from pigs vaccinated against Classic Swine Fever
EFSA Journal 7 (7) 933 (2009) https://doi.org/10.2903/j.efsa.2009.933
Retrospective analysis of the oral immunisation of wild boar populations against classical swine fever virus (CSFV) in region Eifel of Rhineland-Palatinate
Stefan von Rüden, Christoph Staubach, Volker Kaden, et al. Veterinary Microbiology 132 (1-2) 29 (2008) https://doi.org/10.1016/j.vetmic.2008.04.022
A review of viral diseases of the European wild boar: Effects of population dynamics and reservoir rôle
Francisco Ruiz-Fons, Joaquim Segalés and Christian Gortázar The Veterinary Journal 176 (2) 158 (2008) https://doi.org/10.1016/j.tvjl.2007.02.017
Two outbreaks of classical swine fever in wild boar in France
F. Pol, S. Rossi, A. Mesplède, G. Kuntz‐Simon and M‐F. Le Potier Veterinary Record 162 (25) 811 (2008) https://doi.org/10.1136/vr.162.25.811
Potential ecological and epidemiological factors affecting the persistence of classical swine fever in wild boar Sus scrofa populations
S. KRAMER‐SCHADT, N. FERNÁNDEZ and H.‐H. THULKE Mammal Review 37 (1) 1 (2007) https://doi.org/10.1111/j.1365-2907.2007.00097.x
Serosurveillance for selected infectious disease agents in wild boars (Sus scrofa) and outdoor pigs in Switzerland
C. Köppel, L. Knopf, M.-P. Ryser, et al. European Journal of Wildlife Research 53 (3) 212 (2007) https://doi.org/10.1007/s10344-006-0080-0
Monitoring of Classical Swine Fever in Wild Boar (Sus scrofa) in Slovenia
G. Vengust, J. Grom, A. Bidovec and M. Kramer Journal of Veterinary Medicine, Series B 53 (5) 247 (2006) https://doi.org/10.1111/j.1439-0450.2006.00947.x