Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A single subcutaneous dose of eprinomectin (Eprecis®) is effective against common gastrointestinal nematodes and lungworms in experimentally infected lactating goats

Alexandra Beck, Sarah Thomson, David Reddick, Rike Brunner, Dana Campbell-Wilson, Damien Achard, Naomi Isaka, Anne Trotel and Hamadi Karembe
Parasites & Vectors 17 (1) (2024)
https://doi.org/10.1186/s13071-024-06301-w

Environmental impacts of equine parasiticide treatment: The UK perspective

Callum J. Haseler, Julia L. Shrubb, Hannah G. D. Davies, David I. Rendle, Polly C. Rathbone and Timothy S. Mair
Equine Veterinary Education (2024)
https://doi.org/10.1111/eve.13944

Common commercially available parasiticides do not cause fatal changes in the microbiome of the dung beetle Onthophagus binodis –a pilot study

Eva Biggs, Marion L. Donald, Carina Davis, Katherine Trought, Simon V. Fowler, Michael W. Taylor and Danielle M. R. L. Middleton
New Zealand Journal of Zoology 1 (2024)
https://doi.org/10.1080/03014223.2024.2307018

Adverse effects of veterinary drugs, removal processes and mechanisms: A review

Abir Nasir, Mohammed Saleh, Mohammad Tahir Aminzai, Raed Alary, Nadir Dizge and Erdal Yabalak
Journal of Environmental Chemical Engineering 12 (1) 111880 (2024)
https://doi.org/10.1016/j.jece.2024.111880

A SURVEY OF ANTHELMINTIC EFFICACY IN DAIRY GOAT FARMS IN SOUTH-EAST FRANCE

Jacques Devos, Gilles Bourgoin, Philippe Thorey, Tanguy Marcotty, Slimania Benabed, Osmite Berlus, Lea Masson, Eric Pardo and Hervé Hoste
Small Ruminant Research 234 107238 (2024)
https://doi.org/10.1016/j.smallrumres.2024.107238

BEVA primary care clinical guidelines: Equine parasite control

David Rendle, Kristopher Hughes, Mark Bowen, Katie Bull, Ian Cameron, Tamzin Furtado, Laura Peachey, Laura Sharpe and Jane Hodgkinson
Equine Veterinary Journal 56 (3) 392 (2024)
https://doi.org/10.1111/evj.14036

Abamectin causes toxicity to the carp respiratory system by triggering oxidative stress, inflammation, and apoptosis and inhibiting autophagy

Huimiao Feng, Ping Zhou, Feixue Liu, et al.
Environmental Science and Pollution Research 30 (19) 55200 (2023)
https://doi.org/10.1007/s11356-023-26166-3

Effect of Antiparasitic Management of Cattle on the Diversity and Functional Structure of Dung Beetle (Coleoptera: Scarabaeidae) Assemblages in the Colombian Caribbean

Hernando L. Tovar, César M. A. Correa, Jean-Pierre Lumaret, et al.
Diversity 15 (4) 555 (2023)
https://doi.org/10.3390/d15040555

Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms

Ivan Vokřál, Radka Podlipná, Petra Matoušková and Lenka Skálová
Chemosphere 345 140446 (2023)
https://doi.org/10.1016/j.chemosphere.2023.140446

Pumpkin seeds, lemongrass essential oil and ripleaf leaves as feed additives for Ascaridia galli infected laying hens

Anna L. Rodenbücher, Michael Walkenhorst, Mirjam Holinger, et al.
Veterinary Research Communications 47 (2) 817 (2023)
https://doi.org/10.1007/s11259-022-10042-5

Pre-established anthelmintic protocols in horses: low efficacy and unnecessary treatments highlight the need for strategic deworming

Rafaella Back Neves, Denise Pereira Leme, Fernando Jahn Bessa, et al.
Animal Production Science 63 (12) 1226 (2023)
https://doi.org/10.1071/AN22223

Understanding Animal-Plant-Parasite Interactions to Improve the Management of Gastrointestinal Nematodes in Grazing Ruminants

Patrizia Ana Bricarello, Cibele Longo, Raquel Abdallah da Rocha and Maria José Hötzel
Pathogens 12 (4) 531 (2023)
https://doi.org/10.3390/pathogens12040531

Antiparasitic Tannin-Rich Plants from the South of Europe for Grazing Livestock: A Review

Pablo Rodríguez-Hernández, Carolina Reyes-Palomo, Santos Sanz-Fernández, et al.
Animals 13 (2) 201 (2023)
https://doi.org/10.3390/ani13020201

Lack of efficacy of topical administration of eprinomectin against gastrointestinal nematode in a French dairy sheep farm: A case of underexposure of worms

Léa Bordes, Denis Ticoulet, Jean François Sutra, Anne Lespine and Philippe Jacquiet
Veterinary Record Case Reports 10 (4) (2022)
https://doi.org/10.1002/vrc2.435

Potential New Therapeutic Approaches Based on Punica granatum Fruits Compared to Synthetic Anthelmintics for the Sustainable Control of Gastrointestinal Nematodes in Sheep

Fabio Castagna, Roberto Bava, Vincenzo Musolino, et al.
Animals 12 (20) 2883 (2022)
https://doi.org/10.3390/ani12202883

Os agrotóxicos no contexto da Saúde Única

Edaciano Leandro Losch, Caroline Bedin Zanatta, Giuliano Pereira de Barros, Marília Carla de Mello Gaia and Patrizia Ana Bricarello
Saúde em Debate 46 (spe2) 438 (2022)
https://doi.org/10.1590/0103-11042022e229

Toxicity of ivermectin residues in aged farmyard manure to terrestrial and freshwater invertebrates

Bryony Sands and Madeleine Noll
Insect Conservation and Diversity 15 (1) 9 (2022)
https://doi.org/10.1111/icad.12526

Nematicidal activity of Lagenandra toxicaria Dalz and Kaempferia rotunda L. rhizome extracts against root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood and burrowing nematode, Radopholus similis Cobb

Praveen Krishnakumar and Leyon Varghese
Indian Phytopathology 75 (4) 1103 (2022)
https://doi.org/10.1007/s42360-022-00527-3

Determination of abamectin in heart blood and urine following lethal intoxication: a case report

Hao Dai, Daoxia Li, Li Xiao, et al.
Forensic Toxicology 40 (2) 400 (2022)
https://doi.org/10.1007/s11419-022-00617-x

Heat shock proteins and antioxidants as mechanisms of response to ivermectin in the dung beetle Euoniticellus intermedius

Sebastián Villada-Bedoya, Jesús Ramsés Chávez-Ríos, Bibiana Montoya, et al.
Chemosphere 269 128707 (2021)
https://doi.org/10.1016/j.chemosphere.2020.128707

The threat of veterinary medicinal products and biocides on pollinators: A One Health perspective

K.L. Mahefarisoa, N. Simon Delso, V. Zaninotto, M.E. Colin and J.M. Bonmatin
One Health 12 100237 (2021)
https://doi.org/10.1016/j.onehlt.2021.100237

Lasting decrease in functionality and richness: Effects of ivermectin use on dung beetle communities

Lucie Ambrožová, František Xaver Jiří Sládeček, Tomáš Zítek, et al.
Agriculture, Ecosystems & Environment 321 107634 (2021)
https://doi.org/10.1016/j.agee.2021.107634

Evaluating the link between predation and pest control services in the mite world

Lise Roy, Adrien Taudière, Julien Papaïx, et al.
Ecology and Evolution 10 (18) 9968 (2020)
https://doi.org/10.1002/ece3.6655

Behavioral Ecology and Secondary Seed Dispersal by Two Roller Dung Beetles, Sisyphus rubrus (Paschalidis, 1974) and Sisyphus spinipes (Thunberg, 1818) (Coleoptera: Scarabaeidae: Scarabaeinae)

Sandie Manns, Jean M. Holley, Zac Hemmings and Nigel R. Andrew
The Coleopterists Bulletin 74 (4) (2020)
https://doi.org/10.1649/0010-065X-74.4.849

Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.)

Martina Navrátilová, Lucie Raisová Stuchlíková, Lenka Skálová, et al.
Environmental Science and Pollution Research 27 (25) 31202 (2020)
https://doi.org/10.1007/s11356-020-09442-4

Dung beetles: functional identity, not functional diversity, accounts for ecological process disruption caused by the use of veterinary medical products

Mattia Tonelli, José R. Verdú, Federico Morelli and Mario Zunino
Journal of Insect Conservation 24 (4) 643 (2020)
https://doi.org/10.1007/s10841-020-00240-4

Efficient degradation of ivermectin by newly isolated Aeromonas taiwanensis ZJB-18,044

Yuanshan Wang, Meihua Gong, Xianlin Wang, et al.
Biodegradation 31 (4-6) 275 (2020)
https://doi.org/10.1007/s10532-020-09909-8

Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS

Yiwen Li, Zhiwei Gan, Yunxiang Liu, et al.
Science of The Total Environment 719 137516 (2020)
https://doi.org/10.1016/j.scitotenv.2020.137516

Wood Pastures: A Transitional Habitat between Forests and Pastures for Dung Beetle Assemblages

László Somay, Viktor Szigeti, Gergely Boros, Réka Ádám and András Báldi
Forests 12 (1) 25 (2020)
https://doi.org/10.3390/f12010025

Dung Beetle Body Condition: A Tool for Disturbance Evaluation in Contaminated Pastures

Sebastián Villada‐Bedoya, Alex Córdoba‐Aguilar, Federico Escobar, Imelda Martínez‐Morales and Daniel González‐Tokman
Environmental Toxicology and Chemistry 38 (11) 2392 (2019)
https://doi.org/10.1002/etc.4548

Trans-generational and within-generational effects of two macrocyclic lactones on tunneller and dweller dung beetles (Coleoptera: Scarabaeidae): a case study

I. Martínez M., N. Kadiri, Y. Gil Pérez and J.P. Lumaret
The Canadian Entomologist 150 (5) 610 (2018)
https://doi.org/10.4039/tce.2018.35

Ivermectin dissipation and movement from feces to soil under field conditions

Lucía Emilia Iglesias, Carlos Saumell, Federica Sagüés, Juan Manuel Sallovitz and Adrián Luis Lifschitz
Journal of Environmental Science and Health, Part B 53 (1) 42 (2018)
https://doi.org/10.1080/03601234.2017.1371554

Proposal for a Monitoring Concept for Veterinary Medicinal Products with PBT Properties, Using Parasiticides as a Case Study

Jörg Römbke and Karen Duis
Toxics 6 (1) 14 (2018)
https://doi.org/10.3390/toxics6010014

Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy

Mattia Tonelli, José R. Verdú and Mario E. Zunino
PeerJ 5 e2780 (2017)
https://doi.org/10.7717/peerj.2780

Diversity and structure of dung beetle assemblages under two contrasted habitats in Tunisia: oases vs. humid pastures

Imen Labidi, Saïd Nouira and Faïek Errouissi
Austral Entomology 56 (1) 54 (2017)
https://doi.org/10.1111/aen.12210

Simple extraction method for quantification of phenothiazine residues in pork muscle using liquid chromatography–triple quadrupole tandem mass spectrometry

Dan Zhang, Jin‐A Park, Seong‐Kwan Kim, et al.
Biomedical Chromatography 31 (6) (2017)
https://doi.org/10.1002/bmc.3891

Autophagy response in the liver of pigeon exposed to avermectin

Xian-Song Wang, Ci Liu, Pervez Ahmed Khoso, et al.
Environmental Science and Pollution Research 24 (14) 12767 (2017)
https://doi.org/10.1007/s11356-016-6209-0

Comparison of Chemical Attractants against Dung Beetles and Application for Rangeland and Animal Health

J. A. Goolsby, N. K. Singh, D. B. Thomas, et al.
Southwestern Entomologist 42 (2) 339 (2017)
https://doi.org/10.3958/059.042.0203

Antiparasitic drugs: in vitro tests against nematophagous fungi

G. F. Ferreira, T. M. Freitas, C. L. Gonçalves, et al.
Brazilian Journal of Biology 76 (4) 990 (2016)
https://doi.org/10.1590/1519-6984.05615

Laboratory Assays of the Effects of Oxfendazole on Biological Parameters ofGalleria mellonella(Lepidoptera: Pyralidae)

Serkan Sugeçti, Ender Büyükgüzel and Kemal Büyükgüzel
Journal of Entomological Science 51 (2) 129 (2016)
https://doi.org/10.18474/JES15-36.1

Effects of ivermectin application on the diversity and function of dung and soil fauna: Regulatory and scientific background information

Nicole Adler, Jean Bachmann, Wolf U. Blanckenhorn, et al.
Environmental Toxicology and Chemistry 35 (8) 1914 (2016)
https://doi.org/10.1002/etc.3308

A four‐country ring test of nontarget effects of ivermectin residues on the function of coprophilous communities of arthropods in breaking down livestock dung

Thomas Tixier, Wolf U. Blanckenhorn, Joost Lahr, et al.
Environmental Toxicology and Chemistry 35 (8) 1953 (2016)
https://doi.org/10.1002/etc.3243

Photosensitizers in the fight against ticks: safranin as a novel photodynamic fluorescent acaricide to control the camel tick Hyalomma dromedarii (Ixodidae)

Hanem Khater, Nabil Hendawy, Marimuthu Govindarajan, Kadarkarai Murugan and Giovanni Benelli
Parasitology Research 115 (10) 3747 (2016)
https://doi.org/10.1007/s00436-016-5136-9

Isolation, characterization, and tissue-specific expression of GABA A receptor α1 subunit gene of Carassius auratus gibelio after avermectin treatment

Yini Zhao, Qi Sun, Kun Hu, Jiming Ruan and Xianle Yang
Fish Physiology and Biochemistry 42 (1) 83 (2016)
https://doi.org/10.1007/s10695-015-0119-9

Administration of ivermectin to peridomestic cattle: a promising approach to target the residual transmission of human malaria

Hermann S. Pooda, Jean-Baptiste Rayaisse, Domonbabele François de Sale Hien, et al.
Malaria Journal 14 (1) (2015)
https://doi.org/10.1186/s12936-015-1001-z

The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments

Renata Calixto Campos, Malva Isabel Medina Hernández and Ricardo Bomfim Machado
PLOS ONE 10 (12) e0145000 (2015)
https://doi.org/10.1371/journal.pone.0145000

Global DNA hypomethylation: A potential mechanism in King pigeon nerve tissue damage induced by avermectin

Ye Cao, Li-jie Chen, Zi-wei Zhang, et al.
Chemico-Biological Interactions 219 113 (2014)
https://doi.org/10.1016/j.cbi.2014.05.004

Effects of ivermectin residues on dung invertebrate communities in a UK farmland habitat

Gemma Sutton, James Bennett, Mark Bateman, Alan Stewart and Jorge M. Lobo
Insect Conservation and Diversity 7 (1) 64 (2014)
https://doi.org/10.1111/icad.12030

Landscape diversity of pasture dung beetle communities in the central region of mainland Japan and implications for conservation management

O. Imura, N. Morimoto, K. Shi and H. Sasaki
Biodiversity and Conservation 23 (3) 597 (2014)
https://doi.org/10.1007/s10531-014-0619-4

Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (Diptera: Glossinidae) fed on cattle treated with single doses of ivermectin

Sié H Pooda, Karine Mouline, Thierry De Meeûs, Zakaria Bengaly and Philippe Solano
Parasites & Vectors 6 (1) (2013)
https://doi.org/10.1186/1756-3305-6-165

The acaricidal efficacy of aqueous neem extract and ivermectin against Sarcoptes scabiei var. cuniculi in experimentally infested rabbits

Shaker A. Seddiek, Hanem F. Khater, Mohamed M. El-Shorbagy and Ali M. Ali
Parasitology Research 112 (6) 2319 (2013)
https://doi.org/10.1007/s00436-013-3395-2

In vitro control of the camel nasal botfly, Cephalopina titillator, with doramectin, lavender, camphor, and onion oils

Hanem F. Khater, Mohamed Y. Ramadan and Abla D. Abdel Mageid
Parasitology Research 112 (7) 2503 (2013)
https://doi.org/10.1007/s00436-013-3415-2

Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

Cécile Ménez, Jean-François Sutra, Roger Prichard, Anne Lespine and Jennifer Keiser
PLoS Neglected Tropical Diseases 6 (11) e1883 (2012)
https://doi.org/10.1371/journal.pntd.0001883

Comparing Dung Beetle Species Assemblages Between Protected Areas and Adjacent Pasturelands in a Mediterranean Savanna Landscape

Catherine Numa, José R. Verdú, Cristina Rueda and Eduardo Galante
Rangeland Ecology & Management 65 (2) 137 (2012)
https://doi.org/10.2111/REM-D-10-00050.1

Moxidectin and the avermectins: Consanguinity but not identity

Roger Prichard, Cécile Ménez and Anne Lespine
International Journal for Parasitology: Drugs and Drug Resistance 2 134 (2012)
https://doi.org/10.1016/j.ijpddr.2012.04.001

Analysis, occurrence and fate of anthelmintics and their transformation products in the environment

A.J.M. Horvat, S. Babić, D.M. Pavlović, et al.
TrAC Trends in Analytical Chemistry 31 61 (2012)
https://doi.org/10.1016/j.trac.2011.06.023

The economic effects of whole-herd versus selective anthelmintic treatment strategies in dairy cows

J. Charlier, B. Levecke, B. Devleesschauwer, J. Vercruysse and H. Hogeveen
Journal of Dairy Science 95 (6) 2977 (2012)
https://doi.org/10.3168/jds.2011-4719

Studies revealing bioremediation potential of the strain Burkholderia sp. GB-01 for abamectin contaminated soils

Shinawar Waseem Ali, Fang-bo Yu, Lian-tai Li, et al.
World Journal of Microbiology and Biotechnology 28 (1) 39 (2012)
https://doi.org/10.1007/s11274-011-0790-7

Dose Imprecision and Resistance: Free-Choice Medicated Feeds in Industrial Food Animal Production in the United States

David C. Love, Meghan F. Davis, Anna Bassett, Andrew Gunther and Keeve E. Nachman
Environmental Health Perspectives 119 (3) 279 (2011)
https://doi.org/10.1289/ehp.1002625

How to test nontarget effects of veterinary pharmaceutical residues in livestock dung in the field

Ralf Jochmann, Wolf U Blanckenhorn, Luc Bussière, et al.
Integrated Environmental Assessment and Management 7 (2) 287 (2011)
https://doi.org/10.1002/ieam.111

Environmental monitoring of ivermectin excreted in spring climatic conditions by treated cattle on dung fauna and degradation of faeces on pasture

Lucía E. Iglesias, Luis A. Fusé, Adrián L. Lifschitz, et al.
Parasitology Research 108 (5) 1185 (2011)
https://doi.org/10.1007/s00436-010-2161-y

Recommendations on the environmental risk assessment of pharmaceuticals: Effect characterization

Heike Schmitt, Tatiana Boucard, Jeanne Garric, et al.
Integrated Environmental Assessment and Management 6 (S1) 588 (2010)
https://doi.org/10.1897/IEAM_2009-053.1

Isolation and characterization of an abamectin-degrading Burkholderia cepacia-like GB-01 strain

Shinawar Waseem Ali, Rong Li, Wei-you Zhou, et al.
Biodegradation 21 (3) 441 (2010)
https://doi.org/10.1007/s10532-009-9314-7

Field effects of faecal residues from ivermectin slow-release boluses on the attractiveness of cattle dung to dung beetles

F. ERROUISSI and J.-P. LUMARET
Medical and Veterinary Entomology 24 (4) 433 (2010)
https://doi.org/10.1111/j.1365-2915.2010.00891.x

Analytical procedure for the determination of eprinomectin in soil and cattle faeces

V.D. Litskas, G.C. Batzias, X.N. Karamanlis and A.P. Kamarianos
Journal of Chromatography B 878 (19) 1537 (2010)
https://doi.org/10.1016/j.jchromb.2010.04.007

Effects of the parasiticide ivermectin on the structure and function of dung and soil invertebrate communities in the field (Madrid, Spain)

Jörg Römbke, Anja Coors, Álvaro Alonso Fernández, et al.
Applied Soil Ecology 45 (3) 284 (2010)
https://doi.org/10.1016/j.apsoil.2010.05.004

Environmental risk assessment of ivermectin: A case study

Markus Liebig, Álvaro Alonso Fernandez, Elke Blübaum‐Gronau, et al.
Integrated Environmental Assessment and Management 6 (S1) 567 (2010)
https://doi.org/10.1002/ieam.96

Factors influencing dissipation of avermectins in sheep faeces

Tina Virant Celestina, Lucija Kolar, Ivan Gobec, et al.
Ecotoxicology and Environmental Safety 73 (1) 18 (2010)
https://doi.org/10.1016/j.ecoenv.2009.08.008

Effects of the Veterinary Pharmaceutical Ivermectin on Soil Invertebrates in Laboratory Tests

J. Römbke, K. A. Krogh, T. Moser, A. Scheffczyk and M. Liebig
Archives of Environmental Contamination and Toxicology 58 (2) 332 (2010)
https://doi.org/10.1007/s00244-009-9414-8

The veterinary drug ivermectin influences immune response in the yellow dung fly (Scathophaga stercoraria)

Helen M. West and Saoirse R. Tracy
Environmental Pollution 157 (3) 955 (2009)
https://doi.org/10.1016/j.envpol.2008.10.017

Single‐ and two‐species tests to study effects of the anthelmintics ivermectin and morantel and the coccidiostatic monensin on soil invertebrates

John Jensen, Xiaoping Diao and Anne Duus Hansen
Environmental Toxicology and Chemistry 28 (2) 316 (2009)
https://doi.org/10.1897/08-069.1

Membrane–Water partitioning, membrane permeability, and baseline toxicity of the parasiticides ivermectin, albendazole, and morantel

Beate I. Escher, Cindy Berger, Nadine Bramaz, et al.
Environmental Toxicology and Chemistry 27 (4) 909 (2008)
https://doi.org/10.1897/07-427.1

Consequences of the cessation of 3000 years of grazing on dry Mediterranean grassland ground-active beetle assemblages

Sylvain Fadda, Frédéric Henry, Jérôme Orgeas, Philippe Ponel, Élise Buisson and Thierry Dutoit
Comptes Rendus. Biologies 331 (7) 532 (2008)
https://doi.org/10.1016/j.crvi.2008.04.006

Toxicity of abamectin and doramectin to soil invertebrates

Lucija Kolar, Nevenka Kožuh Eržen, Lenny Hogerwerf and Cornelis A.M. van Gestel
Environmental Pollution 151 (1) 182 (2008)
https://doi.org/10.1016/j.envpol.2007.02.011

Estimating the use of veterinary medicines in the European union

Stefan A.E. Kools, Johann F. Moltmann and Thomas Knacker
Regulatory Toxicology and Pharmacology 50 (1) 59 (2008)
https://doi.org/10.1016/j.yrtph.2007.06.003

New screening test to predict the potential impact of ivermectin-contaminated cattle dung on dung beetles

Jean-Pierre Lumaret, Michel Alvinerie, Hella Hempel, et al.
Veterinary Research 38 (1) 15 (2007)
https://doi.org/10.1051/vetres:2006041

Environmental risk assessment of veterinary pharmaceuticals: Development of a standard laboratory test with the dung beetle Aphodius constans

J. Römbke, H. Hempel, A. Scheffczyk, et al.
Chemosphere 70 (1) 57 (2007)
https://doi.org/10.1016/j.chemosphere.2007.07.027

Importance of Dung Incorporation Activity by Three Species of Coprophagous Beetle (Coleoptera: Scarabaeidae: Scarabaeinae) Macrofauna in Pastureland on “La Michilía” Biosphere Reserve in Durango, Mexico

Sofía Anduaga and Carmen Huerta
Environmental Entomology 36 (3) 555 (2007)
https://doi.org/10.1603/0046-225X(2007)36[555:IODIAB]2.0.CO;2

Determination of Eprinomectin in Bovine Urine and Feces Using HPLC with Fluorescence Detection

Haiyang Jiang, Shuangyang Ding, Fei Xu, et al.
Chromatographia 66 (5-6) 411 (2007)
https://doi.org/10.1365/s10337-007-0326-3

Importance of Dung Incorporation Activity by Three Species of Coprophagous Beetle (Coleoptera: Scarabaeidae: Scarabaeinae) Macrofauna in Pastureland on "La Michilia" Biosphere Reserve in Durango, Mexico

S. Anduaga and C. Huerta
Environmental Entomology 36 (3) 555 (2007)
https://doi.org/10.1093/ee/36.3.555

Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae)

Giuseppe Maria Carpaneto, Adriano Mazziotta and Laura Valerio
Diversity and Distributions 13 (6) 903 (2007)
https://doi.org/10.1111/j.1472-4642.2007.00397.x