Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Alba González-Fernández, Oscar Mencía-Ares, María José García-Iglesias, Máximo Petrocchi-Rilo, Rubén Miguélez-Pérez, Alberto Perelló Jiménez, Elena Herencia-Lagunar, Vanessa Acebes-Fernández, César B. Gutiérrez-Martín and Sonia Martínez-Martínez
(2024)
https://doi.org/10.1101/2024.05.15.594294

Upregulation of occludin by cytolethal distending toxin facilitates Glaesserella parasuis adhesion to respiratory tract cells

Zhen Yang, Yiwen Zhang, Senyan Du, Qin Zhao, Xiaobo Huang, Rui Wu, Qigui Yan, Xinfeng Han, Sanjie Cao, Yung-Fu Chang, Yiping Wen and Guy H. Palmer
Infection and Immunity 91 (12) (2023)
https://doi.org/10.1128/iai.00351-23

Interaction between Porcine Alveolar Macrophage-Tang Cells and Streptococcus suis Strains of Different Virulence: Phagocytosis and Apoptosis

Siqi Li, Chunsheng Wang, Yan-Dong Tang, et al.
Microorganisms 11 (1) 160 (2023)
https://doi.org/10.3390/microorganisms11010160

TbpBY167A-based vaccine is safe in pregnant sows and induces high titers of maternal derived antibodies that reduce Glaesserella parasuis colonization in piglets

Diego Dellagostin, Rafaela Luiza Klein, Igor Giacobbo, João Antônio Guizzo, Cláudia Cerutti Dazzi, Simone Ramos Prigol, César Bernardo Gutiérrez Martín, Luiz Carlos Kreutz, Anthony Bernard Schryvers and Rafael Frandoloso
Veterinary Microbiology 276 109630 (2023)
https://doi.org/10.1016/j.vetmic.2022.109630

Screening of linear B-cell epitopes and its proinflammatory activities of Haemophilus parasuis outer membrane protein P2

Jingbo Wu, Wenjin Nan, Guoliang Peng, et al.
Frontiers in Cellular and Infection Microbiology 13 (2023)
https://doi.org/10.3389/fcimb.2023.1192651

Immune responses following neonatal vaccination with conserved F4 fragment of VtaA proteins from virulent Glaesserella parasuis adjuvanted with CAF®01 or CDA

Sergi López-Serrano, Yasser S. Mahmmod, Dennis Christensen, et al.
Vaccine: X 14 100330 (2023)
https://doi.org/10.1016/j.jvacx.2023.100330

Assessment of the Macrophage Scavenger Receptor CD163 in Mediating Glaesserella parasuis Infection of Host Cells

Xiangwei Deng, Shuilian Li, Ying Zhu, et al.
Veterinary Sciences 10 (3) 235 (2023)
https://doi.org/10.3390/vetsci10030235

Upregulation of TLR4-Dependent ATP Production Is Critical for Glaesserella parasuis LPS-Mediated Inflammation

Fei Liu, Yidan Gao, Jian Jiao, et al.
Cells 12 (5) 751 (2023)
https://doi.org/10.3390/cells12050751

Glaesserella parasuis autotransporters EspP1 and EspP2 are novel IgA-specific proteases

Zhichao Wang, Jiayun Gu, Kunxue Xiao, et al.
Frontiers in Microbiology 13 (2022)
https://doi.org/10.3389/fmicb.2022.1041774

Severe Inflammation Caused by Coinfection of PCV2 and Glaesserella parasuis Is Associated with Pyroptosis via Noncanonical Inflammasome Pathway

Jiahui An, Chao Zhang, Jinshuang Cai, Yufeng Li and Shiek Ahmed
Cellular Microbiology 2022 1 (2022)
https://doi.org/10.1155/2022/7227099

TurboID Screening of the OmpP2 Protein Reveals Host Proteins Involved in Recognition and Phagocytosis of Glaesserella parasuis by iPAM Cells

Changsheng Jiang, Ningning Ma, Hua Cao, et al.
Microbiology Spectrum 10 (5) (2022)
https://doi.org/10.1128/spectrum.02307-22

In Vitro Analysis of TGF-β Signaling Modulation of Porcine Alveolar Macrophages in Porcine Circovirus Type 2b Infection

Shunli Yang, Muhammad Umar Zafar Khan, Baohong Liu, et al.
Veterinary Sciences 9 (3) 101 (2022)
https://doi.org/10.3390/vetsci9030101

Expression Analysis of Outer Membrane Protein HPS_06257 in Different Strains of Glaesserella parasuis and Its Potential Role in Protective Immune Response against HPS_06257-Expressing Strains via Antibody-Dependent Phagocytosis

Xiaojun Chen, Hanye Shi, Xingyu Cheng, et al.
Veterinary Sciences 9 (7) 342 (2022)
https://doi.org/10.3390/vetsci9070342

Studying the Interaction of Neutrophils and Glaesserella Parasuis Indicates a Serotype Independent Benefit from Degradation of NETs

Marta C. Bonilla, Simon Lassnig, Andrea Obando Corella, et al.
Pathogens 11 (8) 880 (2022)
https://doi.org/10.3390/pathogens11080880

Effect of Vaccination against Glässer’s Disease in a Farm Suffering from Polyserositis in Weaned Pigs

Jasmine Hattab, Giuseppe Marruchella, Abigail Rose Trachtman, et al.
Veterinary Sciences 9 (12) 691 (2022)
https://doi.org/10.3390/vetsci9120691

Temporal Patterns of Phenotypic Antimicrobial Resistance and Coinfecting Pathogens in Glaesserella parasuis Strains Isolated from Diseased Swine in Germany from 2006 to 2021

Isabeau Wiencek, Maria Hartmann, Jörg Merkel, et al.
Pathogens 11 (7) 721 (2022)
https://doi.org/10.3390/pathogens11070721

Potential of Oral Nanoparticles Containing Cytokines as Intestinal Mucosal Immunostimulants in Pigs: A Pilot Study

Adrià López-Cano, Alex Bach, Sergi López-Serrano, et al.
Animals 12 (9) 1075 (2022)
https://doi.org/10.3390/ani12091075

Proteome Analysis of Outer Membrane Vesicles From a Highly Virulent Strain of Haemophilus parasuis

Kunli Zhang, Pinpin Chu, Shuai Song, et al.
Frontiers in Veterinary Science 8 (2021)
https://doi.org/10.3389/fvets.2021.756764

Glaesserella parasuis induces inflammatory response in 3D4/21 cells through activation of NLRP3 inflammasome signaling pathway via ROS

Xinran Luo, Xiaojing Chang, Hong Zhou, Huixing Lin and Hongjie Fan
Veterinary Microbiology 256 109057 (2021)
https://doi.org/10.1016/j.vetmic.2021.109057

LncRNA-MEG3 Regulates the Inflammatory Responses and Apoptosis in Porcine Alveolar Macrophages Infected with Haemophilus parasuis Through Modulating the miR-210/TLR4 Axis

Rong H. Yin, Zhong B. Guo, Yuan Y. Zhou, et al.
Current Microbiology 78 (8) 3152 (2021)
https://doi.org/10.1007/s00284-021-02590-x

Deletion of the crp gene affects the virulence and the activation of the NF-κB and MAPK signaling pathways in PK-15 and iPAM cells derived from G. parasuis serovar 5

Changsheng Jiang, Jingping Ren, Xiaoqian Zhang, et al.
Veterinary Microbiology 261 109198 (2021)
https://doi.org/10.1016/j.vetmic.2021.109198

Sow Vaccination with a Protein Fragment against Virulent Glaesserella (Haemophilus) parasuis Modulates Immunity Traits in Their Offspring

Sergi López-Serrano, Carlos Neila-Ibáñez, Mar Costa-Hurtado, et al.
Vaccines 9 (5) 534 (2021)
https://doi.org/10.3390/vaccines9050534

The Role of Antibodies Against the Crude Capsular Extract in the Immune Response of Porcine Alveolar Macrophages to In Vitro Infection of Various Serovars of Glaesserella (Haemophilus) parasuis

Katarína Matiašková, Lenka Kavanová, Pavel Kulich, et al.
Frontiers in Immunology 12 (2021)
https://doi.org/10.3389/fimmu.2021.635097

Glässer’s disease in swine from Northeastern Brazil

Hisadora A.S.C. Bom, Givaldo B. Silva Filho, Elayne G. Silva, et al.
Pesquisa Veterinária Brasileira 40 (9) 662 (2020)
https://doi.org/10.1590/1678-5150-pvb-6642

Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant

Kirsten C. Eberle, Samantha J. Hau, Shi-Lu Luan, et al.
Infection and Immunity 88 (5) (2020)
https://doi.org/10.1128/IAI.00879-19

Update on Glässer’s disease: How to control the disease under restrictive use of antimicrobials

Mar Costa-Hurtado, Emili Barba-Vidal, Jaime Maldonado and Virginia Aragon
Veterinary Microbiology 242 108595 (2020)
https://doi.org/10.1016/j.vetmic.2020.108595

Heterogeneity of Moraxella isolates found in the nasal cavities of piglets

Sergi López-Serrano, Nuria Galofré-Milà, Mar Costa-Hurtado, Ana M. Pérez-de-Rozas and Virginia Aragon
BMC Veterinary Research 16 (1) (2020)
https://doi.org/10.1186/s12917-020-2250-9

Serotyping and pathotyping of Glaesserella parasuis isolated 2012–2019 in Germany comparing different PCR-based methods

Lukas Schuwerk, Doris Hoeltig, Karl-Heinz Waldmann, et al.
Veterinary Research 51 (1) (2020)
https://doi.org/10.1186/s13567-020-00862-1

Haemophilus parasuis VtaA2 is involved in adhesion to extracellular proteins

Mar Costa-Hurtado, Laura Garcia-Rodriguez, Sergi Lopez-Serrano and Virginia Aragon
Veterinary Research 50 (1) (2019)
https://doi.org/10.1186/s13567-019-0687-2

Haemophilus parasuis infection in 3D4/21 cells induces autophagy through the AMPK pathway

Yijuan Shen, Nini Zhou, Jiahui An, et al.
Cellular Microbiology 21 (8) (2019)
https://doi.org/10.1111/cmi.13031

Porcine Circovirus Type 2 Induces Single Immunoglobulin Interleukin-1 Related Receptor (SIGIRR) Downregulation to Promote Interleukin-1β Upregulation in Porcine Alveolar Macrophage

Shunli Yang, Baohong Liu, Shuanghui Yin, Youjun Shang, Xinming Zhang, Muhammad Umar Zafar Khan, Xiangtao Liu and Jianping Cai
Viruses 11 (11) 1021 (2019)
https://doi.org/10.3390/v11111021

Porcine Alveolar Macrophages’ Nitric Oxide Synthase-Mediated Generation of Nitric Oxide Exerts Important Defensive Effects against Glaesserella parasuis Infection

Qi Cao, Huan Wang, Wenbin Wei, Yujin Lv, Zhao Wen, Xiaojuan Xu, Xuwang Cai, Huanchun Chen and Xiangru Wang
Pathogens 8 (4) 234 (2019)
https://doi.org/10.3390/pathogens8040234

Characterisation of Bergeyella spp. isolated from the nasal cavities of piglets

M. Lorenzo de Arriba, S. Lopez-Serrano, N. Galofre-Mila and V. Aragon
The Veterinary Journal 234 1 (2018)
https://doi.org/10.1016/j.tvjl.2018.01.004

Limited Interactions between Streptococcus Suis and Haemophilus Parasuis in In Vitro Co-Infection Studies

Annabelle Mathieu-Denoncourt, Corinne Letendre, Jean-Philippe Auger, Mariela Segura, Virginia Aragon, Sonia Lacouture and Marcelo Gottschalk
Pathogens 7 (1) 7 (2018)
https://doi.org/10.3390/pathogens7010007

Haemophilus parasuis α-2,3-sialyltransferase-mediated lipooligosaccharide sialylation contributes to bacterial pathogenicity

Huan Wang, Lu Liu, Qi Cao, et al.
Virulence 9 (1) 1247 (2018)
https://doi.org/10.1080/21505594.2018.1502606

Molecular serotyping ofHaemophilus parasuisisolated from diseased pigs and the relationship between serovars and pathological patterns in Taiwan

Wei-Hao Lin, Hsing-Chun Shih, Chuen-Fu Lin, et al.
PeerJ 6 e6017 (2018)
https://doi.org/10.7717/peerj.6017

iTRAQ-based quantitative proteomic analysis reveals multiple effects of Emodin to Haemophilus parasuis

Li Li, Ye Tian, Jiankang Yu, et al.
Journal of Proteomics 166 39 (2017)
https://doi.org/10.1016/j.jprot.2017.06.020

A robust PCR for the differentiation of potential virulent strains of Haemophilus parasuis

N. Galofré-Milà, F. Correa-Fiz, S. Lacouture, et al.
BMC Veterinary Research 13 (1) (2017)
https://doi.org/10.1186/s12917-017-1041-4

New insights about functional and cross-reactive properties of antibodies generated against recombinant TbpBs of Haemophilus parasuis

Bibiana Martins Barasuol, João Antônio Guizzo, Jamie Elisabeth Fegan, et al.
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/s41598-017-10627-0

Polychlorinated dibenzo‐p‐dioxins and dibenzofurans levels in piglet liver with various diseases

Jeoung Hwa Shin, Won Hyun Ji, Chanhee Chae, Shela Gorinstein and Yun Gyong Ahn
International Journal of Experimental Pathology 98 (4) 214 (2017)
https://doi.org/10.1111/iep.12238

Omp16-based vaccine encapsulated by alginate-chitosan microspheres provides significant protection against Haemophilus parasuis in mice

Xintian Zheng, Xiaoyan Yang, Xiaohua Li, et al.
Vaccine 35 (10) 1417 (2017)
https://doi.org/10.1016/j.vaccine.2017.01.067

Autophagy Is Associated with Pathogenesis of Haemophilus parasuis

Yaning Zhang, Yufeng Li, Wentao Yuan, Yuting Xia and Yijuan Shen
Frontiers in Microbiology 7 (2016)
https://doi.org/10.3389/fmicb.2016.01423

Characterization and Vaccine Potential of Outer Membrane Vesicles Produced by Haemophilus parasuis

William D. McCaig, Crystal L. Loving, Holly R. Hughes, Susan L. Brockmeier and Alain Charbit
PLOS ONE 11 (3) e0149132 (2016)
https://doi.org/10.1371/journal.pone.0149132

Effect ofkpsMon the virulence of porcine extraintestinal pathogenicEscherichia coli

Bingbing Zong, Wugang Liu, Yanyan Zhang, et al.
FEMS Microbiology Letters 363 (21) fnw232 (2016)
https://doi.org/10.1093/femsle/fnw232

Metatranscriptomics reveals metabolic adaptation and induction of virulence factors by Haemophilus parasuis during lung infection

Bernardo Bello-Ortí, Kate J. Howell, Alexander W. Tucker, Duncan J. Maskell and Virginia Aragon
Veterinary Research 46 (1) (2015)
https://doi.org/10.1186/s13567-015-0225-9

Virulence and Draft Genome Sequence Overview of Multiple Strains of the Swine Pathogen Haemophilus parasuis

Susan L. Brockmeier, Karen B. Register, Joanna S. Kuehn, et al.
PLoS ONE 9 (8) e103787 (2014)
https://doi.org/10.1371/journal.pone.0103787

The two-component system NisK/NisR contributes to the virulence of Streptococcus suis serotype 2

Juan Xu, Shulin Fu, Manli Liu, et al.
Microbiological Research 169 (7-8) 541 (2014)
https://doi.org/10.1016/j.micres.2013.11.002

Time course Haemophilus parasuis infection reveals pathological differences between virulent and non-virulent strains in the respiratory tract

Bernardo Bello-Orti, Mar Costa-Hurtado, Veronica Martinez-Moliner, Joaquim Segalés and Virginia Aragon
Veterinary Microbiology 170 (3-4) 430 (2014)
https://doi.org/10.1016/j.vetmic.2014.01.011

Biofilm formation by virulent and non-virulent strains of Haemophilus parasuis

Bernardo Bello-Ortí, Vincent Deslandes, Yannick DN Tremblay, et al.
Veterinary Research 45 (1) (2014)
https://doi.org/10.1186/s13567-014-0104-9

Comparative proteomic analysis of the membrane proteins of two Haemophilus parasuis strains to identify proteins that may help in habitat adaptation and pathogenesis

Luhua Zhang, Yiping Wen, Ying Li, et al.
Proteome Science 12 (1) (2014)
https://doi.org/10.1186/1477-5956-12-38

Virulence, Transmission, and Heterologous Protection of Four Isolates of Haemophilus parasuis

Susan L. Brockmeier, Crystal L. Loving, Michael A. Mullins, et al.
Clinical and Vaccine Immunology 20 (9) 1466 (2013)
https://doi.org/10.1128/CVI.00168-13

Structure of the capsular polysaccharides and lipopolysaccharides from Haemophilus parasuis strains ER-6P (serovar 15) and Nagasaki (serovar 5)

Malcolm B. Perry, Leann L. MacLean, Marcelo Gottschalk, Virginia Aragon and Evgeny Vinogradov
Carbohydrate Research 378 91 (2013)
https://doi.org/10.1016/j.carres.2013.04.023

Serum cross-reaction among virulence-associated trimeric autotransporters (VtaA) of Haemophilus parasuis

Alex Olvera, Verónica Martínez-Moliner, Sonia Pina-Pedrero, et al.
Veterinary Microbiology 164 (3-4) 387 (2013)
https://doi.org/10.1016/j.vetmic.2013.02.022

Changes in Macrophage Phenotype after Infection of Pigs with Haemophilus parasuis Strains with Different Levels of Virulence

Mar Costa-Hurtado, Alexandre Olvera, Verónica Martinez-Moliner, et al.
Infection and Immunity 81 (7) 2327 (2013)
https://doi.org/10.1128/IAI.00056-13

Dilution effect in bovine tuberculosis: risk factors for regional disease occurrence in Africa

Z. Y. X. Huang, W. F. de Boer, F. van Langevelde, et al.
Proceedings of the Royal Society B: Biological Sciences 280 (1765) 20130624 (2013)
https://doi.org/10.1098/rspb.2013.0624

Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165 putative outer membrane proteins

Shulin Fu, Minmin Zhang, Juan Xu, et al.
Vaccine 31 (2) 347 (2013)
https://doi.org/10.1016/j.vaccine.2012.11.003

A complementary diagnosis of naturally occurring tuberculosis in water buffaloes (Bubalus bubalis) in Rio de Janeiro using a MPB70-ELISA, Brazil

Carlos F. O. Zarden, Carla D. Marassi, Walter Oelemann and Walter Lilienbaum
Tropical Animal Health and Production (2012)
https://doi.org/10.1007/s11250-012-0347-2

Identification of potentially virulent strains of Haemophilus parasuis using a multiplex PCR for virulence-associated autotransporters (vtaA)

Alex Olvera, Sonia Pina, Núbia Macedo, et al.
The Veterinary Journal 191 (2) 213 (2012)
https://doi.org/10.1016/j.tvjl.2010.12.014

Distribution of genes involved in sialic acid utilization in strains of Haemophilus parasuis

Verónica Martínez-Moliner, Pedro Soler-Llorens, Javier Moleres, Junkal Garmendia and Virginia Aragon
Microbiology 158 (8) 2117 (2012)
https://doi.org/10.1099/mic.0.056994-0

Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis

Yang Wang, Chong Liu, Ying Fang, et al.
BMC Genomics 13 (1) (2012)
https://doi.org/10.1186/1471-2164-13-68

Outer membrane protein P2 of the Haemophilus parasuis SC096 strain contributes to adherence to porcine alveolar macrophages cells

Bin Zhang, Changgang Xu and Ming Liao
Veterinary Microbiology 158 (1-2) 226 (2012)
https://doi.org/10.1016/j.vetmic.2012.01.023

Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells

Tufária Mussá, Carolina Rodríguez-Cariño, Alejandro Sánchez-Chardi, et al.
Veterinary Research 43 (1) (2012)
https://doi.org/10.1186/1297-9716-43-80

VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages

Mar Costa-Hurtado, Maria Ballester, Nuria Galofré-Milà, Ayub Darji and Virginia Aragon
Veterinary Research 43 (1) (2012)
https://doi.org/10.1186/1297-9716-43-57

Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA)

Alex Olvera, Sonia Pina, Marta Pérez-Simó, et al.
Vaccine 29 (15) 2797 (2011)
https://doi.org/10.1016/j.vaccine.2011.01.105

Invasion of endothelial cells by systemic and nasal strains of Haemophilus parasuis

Virginia Aragon, Bénédicte Bouchet and Marcelo Gottschalk
The Veterinary Journal 186 (2) 264 (2010)
https://doi.org/10.1016/j.tvjl.2009.08.013

Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains

Virginia Aragon, Marta Cerdà-Cuéllar, Lorenzo Fraile, et al.
Veterinary Microbiology 142 (3-4) 387 (2010)
https://doi.org/10.1016/j.vetmic.2009.10.025