Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Effects of induced energy deficiency on lactoferrin concentration in milk and the lactoferrin reaction of primary bovine mammary epithelial cells in vitro

K. Danowski, J. J. Gross, H. H. D. Meyer and H. Kliem
Journal of Animal Physiology and Animal Nutrition 97 (4) 647 (2013)
https://doi.org/10.1111/j.1439-0396.2012.01305.x

Immunolocalization and Correlation Frequencies of Lingual Antimicrobial Peptide and Lactoferrin in Bovine Alveolar Epithelium and Bovine Mammary Gland

Ya Qiong Huang, Naoki Isobe, Yukinori Yoshimura and Kenji Hosoda
Advanced Materials Research 781-784 699 (2013)
https://doi.org/10.4028/www.scientific.net/AMR.781-784.699

The Effects of the Types of Post Milking Teat Disinfectants on the Occurrence and Cost of Mastitis Caused by Staphylococcus aureus among Dairy Herds in Okhotsk, Japan

Kohei MAKITA, Takaharu TOBINAGA, Hazumu KADOWAKI and Hiroshi YAMAMOTO
Journal of Veterinary Epidemiology 17 (2) 125 (2013)
https://doi.org/10.2743/jve.17.125

Pam3CSK4/TLR2 signaling elicits neutrophil recruitment and restricts invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine mastitis model

Michal Mintz, Dvir Mintz, Raaya Ilia-Ezra and Nahum Y. Shpigel
Veterinary Immunology and Immunopathology 152 (1-2) 168 (2013)
https://doi.org/10.1016/j.vetimm.2012.09.030

Mammary immunity of White Park and Highland cattle compared with Brown Swiss and Red Holstein

D. Sorg, E. Fandrey, K. Frölich, H.H.D. Meyer and H. Kliem
Animal Genetic Resources/Ressources génétiques animales/Recursos genéticos animales 52 91 (2013)
https://doi.org/10.1017/S2078633612000781

The mammary gland in domestic ruminants: A systems biology perspective

Ana M. Ferreira, Stine L. Bislev, Emøke Bendixen and André M. Almeida
Journal of Proteomics 94 110 (2013)
https://doi.org/10.1016/j.jprot.2013.09.012

Effects of Sodium Octanoate on Innate Immune Response of Mammary Epithelial Cells duringStaphylococcus aureusInternalization

Nayeli Alva-Murillo, Alejandra Ochoa-Zarzosa and Joel E. López-Meza
BioMed Research International 2013 1 (2013)
https://doi.org/10.1155/2013/927643

Microfluidic high-throughput RT-qPCR measurements of the immune response of primary bovine mammary epithelial cells cultured from milk to mastitis pathogens

D. Sorg, K. Danowski, V. Korenkova, et al.
Animal 7 (5) 799 (2013)
https://doi.org/10.1017/S1751731112002315

Lingual antimicrobial peptide and lactoferrin concentrations and lactoperoxidase activity in bovine colostrum are associated with subsequent somatic cell count

Naoki Isobe, Ayumi Shibata, Hirokazu Kubota and Yukinori Yoshimura
Animal Science Journal 84 (11) 751 (2013)
https://doi.org/10.1111/asj.12113

Relationship between concentration of lingual antimicrobial peptide and somatic cell count in milk of dairy cows

Kazuhiro Kawai, Hirohisa Akamatsu, Tetsu Obayashi, et al.
Veterinary Immunology and Immunopathology 153 (3-4) 298 (2013)
https://doi.org/10.1016/j.vetimm.2013.03.002

Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows

M.C.M.B. Vernay, O. Wellnitz, L. Kreipe, H.A. van Dorland and R.M. Bruckmaier
Journal of Dairy Science 95 (5) 2540 (2012)
https://doi.org/10.3168/jds.2011-5188

Characterization of the bovine innate immune response in milk somatic cells following intramammary infection with Streptococcus dysgalactiae subspecies dysgalactiae

C. Beecher, M. Daly, R.P. Ross, et al.
Journal of Dairy Science 95 (10) 5720 (2012)
https://doi.org/10.3168/jds.2012-5338

Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression

Nayeli Alva-Murillo, Alejandra Ochoa-Zarzosa and Joel E. López-Meza
Veterinary Microbiology 155 (2-4) 324 (2012)
https://doi.org/10.1016/j.vetmic.2011.08.025

Differential immunolocalization between lingual antimicrobial peptide and lactoferrin in mammary gland of dairy cows

Ya Qiong Huang, Kazuhide Morimoto, Kenji Hosoda, Yukinori Yoshimura and Naoki Isobe
Veterinary Immunology and Immunopathology 145 (1-2) 499 (2012)
https://doi.org/10.1016/j.vetimm.2011.10.017

Innate defense capability of challenged primary bovine mammary epithelial cells after an induced negative energy balance in vivo

K. Danowski, D. Sorg, J. Gross, H.H.D. Meyer and H. Kliem
Czech Journal of Animal Science 57 (5) 207 (2012)
https://doi.org/10.17221/5919-CJAS

Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells

Adeline Porcherie, Patricia Cunha, Angelina Trotereau, et al.
Veterinary Research 43 (1) (2012)
https://doi.org/10.1186/1297-9716-43-14

Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows

Juliane Günther, Wolfram Petzl, Holm Zerbe, et al.
BMC Genomics 13 (1) (2012)
https://doi.org/10.1186/1471-2164-13-17

Lipopolysaccharide pretreatment of the udder protects against experimental Escherichia coli mastitis

Wolfram Petzl, Juliane Günther, Tobias Pfister, Carola Sauter-Louis, Leopold Goetze, Sonja von Aulock, Angela Hafner-Marx, Hans-Joachim Schuberth, Hans-Martin Seyfert and Holm Zerbe
Innate Immunity 18 (3) 467 (2012)
https://doi.org/10.1177/1753425911422407

Serum concentration and mRNA expression in milk somatic cells of toll-like receptor 2, toll-like receptor 4, and cytokines in dairy cows following intramammary inoculation with Escherichia coli

J.L. Ma, Y.H. Zhu, L. Zhang, et al.
Journal of Dairy Science 94 (12) 5903 (2011)
https://doi.org/10.3168/jds.2011-4167

Between-cow variation in dermal fibroblast response to lipopolysaccharide reflected in resolution of inflammation during Escherichia coli mastitis

S. Kandasamy, B.B. Green, A.L. Benjamin and D.E. Kerr
Journal of Dairy Science 94 (12) 5963 (2011)
https://doi.org/10.3168/jds.2011-4288

Differential gene expression of the toll-like receptor-4 cascade and neutrophil function in early- and mid-lactating dairy cows

M.G.H. Stevens, L.J. Peelman, B. De Spiegeleer, et al.
Journal of Dairy Science 94 (3) 1277 (2011)
https://doi.org/10.3168/jds.2010-3563

The lipopolysaccharide of the mastitis isolate Escherichia coli strain 1303 comprises a novel O-antigen and the rare K-12 core type

Katarzyna A. Duda, Buko Lindner, Helmut Brade, et al.
Microbiology 157 (6) 1750 (2011)
https://doi.org/10.1099/mic.0.046912-0

Comparative Kinetics of Escherichia coli - and Staphylococcus aureus -Specific Activation of Key Immune Pathways in Mammary Epithelial Cells Demonstrates That S. aureus Elicits a Delayed Response Dominated by Interleukin-6 (IL-6) but Not by IL-1A or Tumor Necrosis Factor Alpha

Juliane Günther, Kathrin Esch, Norbert Poschadel, et al.
Infection and Immunity 79 (2) 695 (2011)
https://doi.org/10.1128/IAI.01071-10

Host-response patterns of intramammary infections in dairy cows

Ynte H. Schukken, J. Günther, J. Fitzpatrick, et al.
Veterinary Immunology and Immunopathology 144 (3-4) 270 (2011)
https://doi.org/10.1016/j.vetimm.2011.08.022

Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland

O. Wellnitz, E.T. Arnold and R.M. Bruckmaier
Journal of Dairy Science 94 (11) 5405 (2011)
https://doi.org/10.3168/jds.2010-3931

Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression

Cormac J. Whelehan, Kieran G. Meade, P. David Eckersall, Fiona J. Young and Cliona O’Farrelly
Veterinary Immunology and Immunopathology 140 (3-4) 181 (2011)
https://doi.org/10.1016/j.vetimm.2010.11.013

Relationship between somatic cell count status and subsequent clinical mastitis in Dutch dairy cows

B.H.P. van den Borne, J.C.M. Vernooij, A.M. Lupindu, et al.
Preventive Veterinary Medicine 102 (4) 265 (2011)
https://doi.org/10.1016/j.prevetmed.2011.07.013

Genomic and proteomic characterization of Staphylococcus aureus mastitis isolates of bovine origin

Carmen Wolf, Harald Kusch, Stefan Monecke, et al.
PROTEOMICS 11 (12) 2491 (2011)
https://doi.org/10.1002/pmic.201000698

Molecular analysis and recombinant expression of bovine neutrophil β-defensin 12 and its antimicrobial activity

Jianming Wu, Changfa Wang, Hongbin He, et al.
Molecular Biology Reports 38 (1) 429 (2011)
https://doi.org/10.1007/s11033-010-0125-z

Immunopathology of Mastitis: Insights into Disease Recognition and Resolution

Stacey L. Aitken, Christine M. Corl and Lorraine M. Sordillo
Journal of Mammary Gland Biology and Neoplasia 16 (4) 291 (2011)
https://doi.org/10.1007/s10911-011-9230-4

Lingual antimicrobial peptide and IL-8 expression are oppositely regulated by the antagonistic effects of NF-κB p65 and C/EBPβ in mammary epithelial cells

Shuzhen Liu, Xuanming Shi, Isabel Bauer, Juliane Günther and Hans-Martin Seyfert
Molecular Immunology 48 (6-7) 895 (2011)
https://doi.org/10.1016/j.molimm.2010.12.018

Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score

Bodo Brand, Anja Hartmann, Dirk Repsilber, et al.
Genetics Selection Evolution 43 (1) (2011)
https://doi.org/10.1186/1297-9686-43-24

Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources

Sem Genini, Bouabid Badaoui, Gert Sclep, et al.
BMC Genomics 12 (1) (2011)
https://doi.org/10.1186/1471-2164-12-225

Differential localization of lingual antimicrobial peptide in the digestive tract mucosal epithelium of calves

Naoki Isobe, Toshihisa Sugino, Kohzo Taniguchi, et al.
Veterinary Immunology and Immunopathology 142 (1-2) 87 (2011)
https://doi.org/10.1016/j.vetimm.2011.03.020

Functional Adaptations of the Transcriptome to Mastitis-Causing Pathogens: The Mammary Gland and Beyond

Juan J. Loor, Kasey M. Moyes and Massimo Bionaz
Journal of Mammary Gland Biology and Neoplasia 16 (4) 305 (2011)
https://doi.org/10.1007/s10911-011-9232-2

The antibacterial psoriasin is induced by E. coli infection in the bovine udder

Petra Regenhard, Wolfram Petzl, Holm Zerbe and Helga Sauerwein
Veterinary Microbiology 143 (2-4) 293 (2010)
https://doi.org/10.1016/j.vetmic.2009.11.035

Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland

Simone Mitterhuemer, Wolfram Petzl, Stefan Krebs, et al.
BMC Genomics 11 (1) (2010)
https://doi.org/10.1186/1471-2164-11-138

Muramyl Dipeptide Synergizes with Staphylococcus aureus Lipoteichoic Acid To Recruit Neutrophils in the Mammary Gland and To Stimulate Mammary Epithelial Cells

Salim Bougarn, Patricia Cunha, Abdallah Harmache, et al.
Clinical and Vaccine Immunology 17 (11) 1797 (2010)
https://doi.org/10.1128/CVI.00268-10

A sentinel function for teat tissues in dairy cows: dominant innate immune response elements define early response to E. coli mastitis

Manuela Rinaldi, Robert W. Li, Douglas D. Bannerman, et al.
Functional & Integrative Genomics 10 (1) 21 (2010)
https://doi.org/10.1007/s10142-009-0133-z

Investigation of mammary blood flow changes by transrectal colour Doppler sonography in anEscherichia colimastitis model

André Potapow, Carola Sauter-Louis, Sandra Schmauder, et al.
Journal of Dairy Research 77 (2) 205 (2010)
https://doi.org/10.1017/S0022029910000105

Stimulated expression of TNF-α and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells

Juliane Günther, Shuzhen Liu, Kathrin Esch, Hans-Joachim Schuberth and Hans-Martin Seyfert
Veterinary Immunology and Immunopathology 135 (1-2) 152 (2010)
https://doi.org/10.1016/j.vetimm.2009.11.004

Differential levels of mRNA transcripts encoding immunologic mediators in mammary gland secretions from dairy cows with subclinical environmental Streptococci infections

Daniela R. Bruno, Paul V. Rossitto, Ralph.G.S. Bruno, et al.
Veterinary Immunology and Immunopathology 138 (1-2) 15 (2010)
https://doi.org/10.1016/j.vetimm.2010.06.009

The spatial expression pattern of antimicrobial peptides across the healthy bovine udder

J. Tetens, J.J. Friedrich, A. Hartmann, et al.
Journal of Dairy Science 93 (2) 775 (2010)
https://doi.org/10.3168/jds.2009-2729

Expression of bovine granulocyte chemotactic protein-2 (GCP-2) in neutrophils and a mammary epithelial cell line (MAC-T) in response to various bacterial cell wall components

Chi Yu, Zhao-Ru Shi, Chun-Yen Chu, et al.
The Veterinary Journal 186 (1) 89 (2010)
https://doi.org/10.1016/j.tvjl.2009.07.012

Assessment of the immune capacity of mammary epithelial cells: comparison with mammary tissue after challenge withEscherichia coli

Juliane Günther, Dirk Koczan, Wei Yang, et al.
Veterinary Research 40 (4) 31 (2009)
https://doi.org/10.1051/vetres/2009014

Intramammary challenge of lipopolysaccharide stimulates secretion of lingual antimicrobial peptide into milk of dairy cows

N. Isobe, K. Morimoto, J. Nakamura, A. Yamasaki and Y. Yoshimura
Journal of Dairy Science 92 (12) 6046 (2009)
https://doi.org/10.3168/jds.2009-2594

Existence of functional lingual antimicrobial peptide in bovine milk

N. Isobe, J. Nakamura, H. Nakano and Y. Yoshimura
Journal of Dairy Science 92 (6) 2691 (2009)
https://doi.org/10.3168/jds.2008-1940