Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

The secreted protein kinase CstK from Coxiella burnetii influences vacuole development and interacts with the GTPase-activating host protein TBC1D5

Eric Martinez, Sylvaine Huc-Brandt, Solène Brelle, et al.
Journal of Biological Chemistry 295 (21) 7391 (2020)
https://doi.org/10.1074/jbc.RA119.010112

Potential public health risk due to consumption of contaminated bovine milk with aflatoxin M1 and Coxiella burnetii in the West of Iran

Elham Ahmadi
International Journal of Dairy Technology 73 (3) 479 (2020)
https://doi.org/10.1111/1471-0307.12687

Spatial transmission risk during the 2007-2010 Q fever epidemic in The Netherlands: Analysis of the farm-to-farm and farm-to-resident transmission

Aline A. de Koeijer, Thomas J. Hagenaars, Jeroen P. G. van Leuken, et al.
PLOS ONE 15 (2) e0227491 (2020)
https://doi.org/10.1371/journal.pone.0227491

Current approaches for the detection of Coxiella burnetii infection in humans and animals

Radhakrishna Sahu, Deepak B. Rawool, Valil Kunjukunju Vinod, S.V.S. Malik and Sukhadeo B. Barbuddhe
Journal of Microbiological Methods 179 106087 (2020)
https://doi.org/10.1016/j.mimet.2020.106087

Coxiella burnetii in Dromedary Camels (Camelus dromedarius): A Possible Threat for Humans and Livestock in North Africa and the Near and Middle East?

Christian A. Devaux, Ikram Omar Osman, Matthieu Million and Didier Raoult
Frontiers in Veterinary Science 7 (2020)
https://doi.org/10.3389/fvets.2020.558481

Serological evidence of Coxiella burnetii infection in slaughtered sheep and goats at Kumasi Abattoir, Ghana

Raphael D Folitse, Tony Opoku-Agyemang, Esther Amemor, et al.
Journal of Immunoassay and Immunochemistry 41 (2) 152 (2020)
https://doi.org/10.1080/15321819.2019.1701012

Comparison of two new in-house Latex Agglutination Tests (LATs), based on the DnaK and Com1 synthetic peptides of Coxiella burnetii, with a commercial indirect-ELISA, for sero-screening of coxiellosis in bovines

Jay Prakash Yadav, Satya Veer Singh Malik, Pankaj Dhaka, et al.
Journal of Microbiological Methods 170 105859 (2020)
https://doi.org/10.1016/j.mimet.2020.105859

Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines

Remil L. Galay, Melbourne R. Talactac, Bea V. Ambita-Salem, Dawn Maureen M. Chu, Lali Marie O. dela Costa, Cinnamon Mae A. Salangsang, Darwin Kyle B. Caracas, Florante H. Generoso, Jonathan A. Babelonia, Joeneil L. Vergano, Lena C. Berana, Kristina Andrea C. Sandalo, Billy P. Divina, Cherry R. Alvarez, Emmanuel R. Mago, Masako Andoh and Tetsuya Tanaka
Tropical Medicine and Infectious Disease 5 (2) 54 (2020)
https://doi.org/10.3390/tropicalmed5020054

Rodents as Reservoirs of the Zoonotic Pathogens Coxiella burnetii and Toxoplasma gondii in Corsica (France)

Elena Izquierdo-Rodríguez, Ángela Fernández-Álvarez, Natalia Martín-Carrilo, et al.
Vector-Borne and Zoonotic Diseases 19 (12) 879 (2019)
https://doi.org/10.1089/vbz.2019.2485

Das Q-Fieber

N. Schöffel, M. Braun, G. Volante, M. H. K Bendels and D. A. Groneberg
Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie 69 (1) 27 (2019)
https://doi.org/10.1007/s40664-017-0258-1

Coxiella burnetiiin wild mammals: A systematic review

David González‐Barrio and Francisco Ruiz‐Fons
Transboundary and Emerging Diseases 66 (2) 662 (2019)
https://doi.org/10.1111/tbed.13085

Global Applications of One Health Practice and Care

Rita Cruz, Carmen Vasconcelos-Nobrega, Fernando Esteves, et al.
Advances in Medical Diagnosis, Treatment, and Care, Global Applications of One Health Practice and Care 195 (2019)
https://doi.org/10.4018/978-1-5225-6304-4.ch009

The prevalence of Coxiella burnetii in ticks and animals in Slovenia

Nataša Knap, Diana Žele, Urška Glinšek Biškup, Tatjana Avšič-Županc and Gorazd Vengušt
BMC Veterinary Research 15 (1) (2019)
https://doi.org/10.1186/s12917-019-2130-3

Presence of Rickettsia aeschlimannii, ‘Candidatus Rickettsia barbariae’ and Coxiella burnetii in ticks from livestock in Northwestern Algeria

Karim Abdelkadir, Ana M. Palomar, Aránzazu Portillo, et al.
Ticks and Tick-borne Diseases 10 (4) 924 (2019)
https://doi.org/10.1016/j.ttbdis.2019.04.018

Global Applications of One Health Practice and Care

Rita Cruz, Carmen Vasconcelos-Nobrega, Fernando Esteves, et al.
Advances in Medical Diagnosis, Treatment, and Care, Global Applications of One Health Practice and Care 174 (2019)
https://doi.org/10.4018/978-1-5225-6304-4.ch008

Q fever: A neglected disease of camels in Giza and Cairo Provinces, Egypt

Hend H. A. M. Abdullah, Hany A. Hussein, Khaled A. Abd El-Razik, Ashraf M. A. Barakat and Yousef A. Soliman
Veterinary World 12 (12) 1945 (2019)
https://doi.org/10.14202/vetworld.2019.1945-1950

Prevalence of Coxiella burnetii in cattle and buffalo populations in Punjab, India

R. Keshavamurthy, B.B. Singh, D.G. Kalambhe, R.S. Aulakh and N.K. Dhand
Preventive Veterinary Medicine 166 16 (2019)
https://doi.org/10.1016/j.prevetmed.2019.03.003

Seroprevalence and molecular detection of coxiellosis among cattle and their human contacts in an organized dairy farm

Pankaj Dhaka, Satyaveer S. Malik, Jay P. Yadav, et al.
Journal of Infection and Public Health 12 (2) 190 (2019)
https://doi.org/10.1016/j.jiph.2018.10.001

Pathological findings and survey for pathogens associated with reproductive failure in perinatal Steller sea lions Eumetopias jubatus

JA Esquible, K Burek-Huntington, S Atkinson, et al.
Diseases of Aquatic Organisms 137 (2) 131 (2019)
https://doi.org/10.3354/dao03421

Serological and Molecular Investigation of Coxiella burnetii in Small Ruminants and Ticks in Punjab, Pakistan

Qudrat Ullah, Hosny El-Adawy, Tariq Jamil, Huma Jamil, Zafar Iqbal Qureshi, Muhammad Saqib, Shakeeb Ullah, Muhammad Kamal Shah, Alam Zeb Khan, Muhammad Zubair, Iahtasham Khan, Katja Mertens-Scholz, Klaus Henning and Heinrich Neubauer
International Journal of Environmental Research and Public Health 16 (21) 4271 (2019)
https://doi.org/10.3390/ijerph16214271

Molecular Detection of Coxiella burnetii in Cattle on Ulleung Island, Korea: A Population-based Study with Four Years of Follow Up

Min-Goo Seo, Oh-Deog Kwon and Dongmi Kwak
The Korean Journal of Parasitology 57 (1) 69 (2019)
https://doi.org/10.3347/kjp.2019.57.1.69

Solene Brelle, Eric Martinez, Sylvaine Huc-Brandt, Julie Allombert, Franck Cantet, Laila Gannoun-Zaki, François Letourneur, Matteo Bonazzi and Virginie Molle
(2019)
https://doi.org/10.1101/611707

Development of the Com1 synthetic peptide-based Latex Agglutination Test (LAT) and its comparative evaluation with commercial indirect-ELISA for sero-screening of coxiellosis in cattle

Manesh Kumar, Satyaveer Singh Malik, Jess Vergis, et al.
Journal of Microbiological Methods 162 83 (2019)
https://doi.org/10.1016/j.mimet.2019.05.012

The serostatus of Brucella spp., Chlamydia abortus, Coxiella burnetii and Neospora caninum in cattle in three cantons in Bosnia and Herzegovina

Adis Softic, Kassahun Asmare, Erik Georg Granquist, et al.
BMC Veterinary Research 14 (1) (2018)
https://doi.org/10.1186/s12917-018-1361-z

Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: A consensus statement

Paul J. Plummer, J.Trenton McClure, Paula Menzies, et al.
Journal of Veterinary Internal Medicine 32 (5) 1481 (2018)
https://doi.org/10.1111/jvim.15229

Serological and molecular evidence of coxiellosis and risk factors in sheep flocks in central-eastern Tunisia

Mohamed Barkallah, Yaakoub Gharbi, Mariem Hmani, et al.
Comparative Immunology, Microbiology and Infectious Diseases 57 15 (2018)
https://doi.org/10.1016/j.cimid.2018.02.001

Coxiella burnetii in dairy goats with a history of reproductive disorders in Brazil

Júnior Mário Baltazar de Oliveira, Tatiana Rozental, Elba Regina Sampaio de Lemos, et al.
Acta Tropica 183 19 (2018)
https://doi.org/10.1016/j.actatropica.2018.04.010

The bacterial biota of laboratory-reared edible mealworms ( Tenebrio molitor L.): From feed to frass

Andrea Osimani, Vesna Milanović, Federica Cardinali, et al.
International Journal of Food Microbiology 272 49 (2018)
https://doi.org/10.1016/j.ijfoodmicro.2018.03.001

Outbreaks of abortions byCoxiella burnetiiin small ruminant flocks and a longitudinal serological approach on archived bulk tank milk suggest Q fever emergence in Central Portugal

Rita Cruz, Fernando Esteves, Carmen Vasconcelos-Nóbrega, et al.
Transboundary and Emerging Diseases 65 (4) 972 (2018)
https://doi.org/10.1111/tbed.12913

Antibodies to Coxiella burnetii in Irish bulk tank milk samples

Eoin D Ryan, Karina Wrigley, Anne Hallinan, Guy McGrath and Tracy Ann Clegg
Veterinary Record 182 (19) 550 (2018)
https://doi.org/10.1136/vr.104663

Detection of Coxiella burnetii and risk factors for infection in ruminants in a central county of Iran

Zary Nokhodian, Behrooz Ataei, Mohammad khalili, et al.
Veterinary Microbiology 222 7 (2018)
https://doi.org/10.1016/j.vetmic.2018.06.008

Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR

Andrea Osimani, Vesna Milanović, Cristiana Garofalo, et al.
International Journal of Food Microbiology 276 54 (2018)
https://doi.org/10.1016/j.ijfoodmicro.2018.04.013

Airborne geographical dispersal of Q fever from livestock holdings to human communities: a systematic review and critical appraisal of evidence

Nicholas J. Clark and Ricardo J. Soares Magalhães
BMC Infectious Diseases 18 (1) (2018)
https://doi.org/10.1186/s12879-018-3135-4

Exploratory investigation of Q fever in apparently healthy meat sheep flocks in Belgium

A. Djerbib, G. Czaplicki, F. Grégoire, et al.
Transboundary and Emerging Diseases 65 (4) 1117 (2018)
https://doi.org/10.1111/tbed.12850

Understanding Q Fever Risk to Humans in Minnesota Through the Analysis of Spatiotemporal Trends

Julio Alvarez, Tory Whitten, Adam J. Branscum, et al.
Vector-Borne and Zoonotic Diseases 18 (2) 89 (2018)
https://doi.org/10.1089/vbz.2017.2132

Molecular epidemiology of Coxiella burnetii in human, animals and ticks in Bangladesh

Siddiqur Rahman Md., Chakrabartty Amitavo, Rani Sarker Roma, et al.
African Journal of Microbiology Research 12 (6) 136 (2018)
https://doi.org/10.5897/AJMR2017.8718

Prospective Serosurvey of Coxiella burnetii Antibodies in Selected Sheep of Portugal

Rita Cruz, Fernando Esteves, Carmen Vasconcelos-Nóbrega, et al.
EcoHealth 15 (4) 871 (2018)
https://doi.org/10.1007/s10393-018-1374-x

Review of common causes of abortion in dairy cattle in Ethiopia

Tulu Dereje, Deresa Benti, Begna Feyisa and Gojam Abiy
Journal of Veterinary Medicine and Animal Health 10 (1) 1 (2018)
https://doi.org/10.5897/JVMAH2017.0639

Seroprevalence of Q Fever and Brucellosis in Domestic and Imported Cattle of Southeastern Iran

Ahmad Ghasemi, Mohammad Reza Hajinezhad, Saber Esmaeili and Ehsan Mostafavi
Journal of Medical Microbiology and Infectious Diseases 6 (2) 48 (2018)
https://doi.org/10.29252/JoMMID.6.2.3.48

Draft Genome Sequences of the Avirulent Coxiella burnetii Dugway 7D77-80 and Dugway 7E65-68 Strains Isolated from Rodents in Dugway, Utah

Paul A. Beare, Brendan M. Jeffrey, Craig A. Martens and Robert A. Heinzen
Genome Announcements 5 (39) (2017)
https://doi.org/10.1128/genomeA.00984-17

«QUERY FEVER»: DOWN THE LINE EIGHTY YEARS

Valery A. Malov, A. N Gorobchenko, N. M Gyulazyan, et al.
Epidemiology and Infectious Diseases 22 (4) 200 (2017)
https://doi.org/10.17816/EID40983

Erfahrungen von Tierhaltern in niedersächsischen Milchkuhbetrieben mit der Impfung gegen Q-Fieber

Heinz-Josef Dieckhoff, Katja Lohan, Stefanie Lehner and Ursula Gerdes
Tierärztliche Praxis Ausgabe G: Großtiere / Nutztiere 45 (03) 141 (2017)
https://doi.org/10.15653/TPG-160602

Coxiella burnetii Circulation in a Naturally Infected Flock of Sheep: Individual Follow-Up of Antibodies in Serum and Milk

A. Joulié, E. Rousset, P. Gasqui, et al.
Applied and Environmental Microbiology 83 (13) (2017)
https://doi.org/10.1128/AEM.00222-17

Peripartum dynamics of Coxiella burnetii infections in intensively managed dairy goats associated with a Q fever outbreak in Australia

Michael Muleme, John Stenos, Gemma Vincent, et al.
Preventive Veterinary Medicine 139 58 (2017)
https://doi.org/10.1016/j.prevetmed.2017.02.006

Detection ofCoxiella burnetiiDNA in Peridomestic and Wild Animals and Ticks in an Endemic Region (Canary Islands, Spain)

Margarita Bolaños-Rivero, Cristina Carranza-Rodríguez, Noe F. Rodríguez, Carlos Gutiérrez and José-Luis Pérez-Arellano
Vector-Borne and Zoonotic Diseases 17 (9) 630 (2017)
https://doi.org/10.1089/vbz.2017.2120

Seroprevalence of chlamydial abortion and Q fever in ewes aborted in the North-West of Algeria

Abdelkadir Karim, Oudia Khatima Ait and Djamel Khelef
Journal of Veterinary Medicine and Animal Health 9 (9) 246 (2017)
https://doi.org/10.5897/JVMAH2016.0474

Prevalence and Risk Factors of Coxiella burnetii Antibodies in Bulk Milk from Cattle, Sheep, and Goats in Jordan

Mohammad M. Obaidat and Gilbert J. Kersh
Journal of Food Protection 80 (4) 561 (2017)
https://doi.org/10.4315/0362-028X.JFP-16-377

Seroscreening of lactating cattle for coxiellosis by TRANS-PCR and commercial ELISA in Kerala, India

Pankaj Dhaka, Satyaveer Singh Malik, Jay Prakash Yadav, et al.
Journal of Experimental Biology and Agricultural Sciences 5 (3) 377 (2017)
https://doi.org/10.18006/2017.5(3).377.383

Coxiella burnetiiInfections in Small Ruminants and Humans in Switzerland

I. Magouras, J. Hunninghaus, S. Scherrer, et al.
Transboundary and Emerging Diseases 64 (1) 204 (2017)
https://doi.org/10.1111/tbed.12362

Molecular epidemiology of Coxiella burnetii in French livestock reveals the existence of three main genotype clusters and suggests species-specific associations as well as regional stability

Aurelien Joulié, Karim Sidi-Boumedine, Xavier Bailly, et al.
Infection, Genetics and Evolution 48 142 (2017)
https://doi.org/10.1016/j.meegid.2016.12.015

Seroprevalence of Leptospirosis, Brucellosis, and Q Fever in a Wild Red Deer (Cervus elaphus) Population Kept in a Fenced Reserve in Absence of Contact with Livestock

Jose María San-Miguel Ayanz, Francisco Javier Garcia-Peña, Paula García-Lunar, et al.
Vector-Borne and Zoonotic Diseases 17 (10) 692 (2017)
https://doi.org/10.1089/vbz.2016.2105

Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network

Ina Häuslein, Franck Cantet, Sarah Reschke, et al.
Frontiers in Cellular and Infection Microbiology 7 (2017)
https://doi.org/10.3389/fcimb.2017.00285

Coxiella burnetii isolates originating from infected cattle induce a more pronounced proinflammatory cytokine response compared to isolates from infected goats and sheep

Anne Ammerdorffer, Runa Kuley, Annemieke Dinkla, et al.
Pathogens and Disease 75 (4) (2017)
https://doi.org/10.1093/femspd/ftx040

Coxiella burnetii (Q fever) prevalence in associated populations of humans and small ruminants in The Gambia

Jeroen Bok, Lenny Hogerwerf, Eveline A. Germeraad, et al.
Tropical Medicine & International Health 22 (3) 323 (2017)
https://doi.org/10.1111/tmi.12827

Seroreactivity to Q Fever Among Slaughterhouse Workers in South Korea

Hyuk Chu, Seok-Ju Yoo, Kyu-Jam Hwang, et al.
Journal of Preventive Medicine and Public Health 50 (3) 195 (2017)
https://doi.org/10.3961/jpmph.17.017

Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains

Runa Kuley, Eric Kuijt, Mari A. Smits, et al.
Frontiers in Microbiology 8 (2017)
https://doi.org/10.3389/fmicb.2017.01526

Permissiveness of bovine epithelial cells from lung, intestine, placenta and udder for infection with Coxiella burnetii

Katharina Sobotta, Katharina Bonkowski, Elisabeth Liebler-Tenorio, et al.
Veterinary Research 48 (1) (2017)
https://doi.org/10.1186/s13567-017-0430-9

Presence of Coxiella burnetii DNA in inflamed bovine cardiac valves

Jørgen S. Agerholm, Tim K. Jensen, Jens F. Agger, Marc Y. Engelsma and Hendrik I. J. Roest
BMC Veterinary Research 13 (1) (2016)
https://doi.org/10.1186/s12917-017-0988-5

Detection of Coxiella burnetii in Aborted Fetuses of Cattle and Sheep Using Polymerase Chain Reaction Assay in Mashhad City, Iran

Zeinab Abiri, Mohammad Khalili, Mehrnaz Rad and Hamid Sharifi
International Journal of Enteric Pathogens 4 (1) (2016)
https://doi.org/10.17795/ijep33170

A cross sectional study evaluating the prevalence of Coxiella burnetii, potential risk factors for infection, and agreement between diagnostic methods in goats in Indiana

Amy E. Bauer, Kirk R.A. Hubbard, April J. Johnson, et al.
Preventive Veterinary Medicine 126 131 (2016)
https://doi.org/10.1016/j.prevetmed.2016.01.026

High seroprevalence of Coxiella burnetii in dairy cattle in China

Heba S. El-Mahallawy, Patrick Kelly, Jilei Zhang, et al.
Tropical Animal Health and Production 48 (2) 423 (2016)
https://doi.org/10.1007/s11250-015-0968-3

Occurrence of Coxiella burnetii in goat and ewe unpasteurized cheeses: Screening and genotyping

Alessia Galiero, Filippo Fratini, Cesare Cammà, et al.
International Journal of Food Microbiology 237 47 (2016)
https://doi.org/10.1016/j.ijfoodmicro.2016.08.008

Analysis of Q fever in Dutch dairy goat herds and assessment of control measures by means of a transmission model

D.M. Bontje, J.A. Backer, L. Hogerwerf, H.I.J. Roest and H.J.W. van Roermund
Preventive Veterinary Medicine 123 71 (2016)
https://doi.org/10.1016/j.prevetmed.2015.11.004

Spread of Coxiella burnetii between dairy cattle herds in an enzootic region: modelling contributions of airborne transmission and trade

Pranav Pandit, Thierry Hoch, Pauline Ezanno, François Beaudeau and Elisabeta Vergu
Veterinary Research 47 (1) (2016)
https://doi.org/10.1186/s13567-016-0330-4

Single Nucleotide Polymorphism Genotyping and Distribution of Coxiella burnetii Strains from Field Samples in Belgium

Fabiana Dal Pozzo, Bénédicte Renaville, Ludovic Martinelle, et al.
Applied and Environmental Microbiology 82 (1) 81 (2016)
https://doi.org/10.1128/AEM.02799-15

Bayesian Validation of the Indirect Immunofluorescence Assay and Its Superiority to the Enzyme-Linked Immunosorbent Assay and the Complement Fixation Test for Detecting Antibodies against Coxiella burnetii in Goat Serum

Michael Muleme, John Stenos, Gemma Vincent, et al.
Clinical and Vaccine Immunology 23 (6) 507 (2016)
https://doi.org/10.1128/CVI.00724-15

Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia

Ante Tadin, Rafal Tokarz, Alemka Markotić, et al.
The American Journal of Tropical Medicine and Hygiene 94 (2) 466 (2016)
https://doi.org/10.4269/ajtmh.15-0517

Coxiella burnetii in samples from cattle herds and sheep flocks in the Kars region of Turkey

A. Gulmez Saglam and M. Sahin
Veterinární medicína 61 (1) 17 (2016)
https://doi.org/10.17221/8678-VETMED

Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows

L.S.-Ch. Schulze, S. Borchardt, V. Ouellet and W. Heuwieser
Journal of Dairy Science 99 (1) 541 (2016)
https://doi.org/10.3168/jds.2015-9628

Molecular Identification of Q Fever in Patients with a Suspected Diagnosis of Dengue in Brazil in 2013–2014

Maria Angélica M. M. Mares-Guia, Elba R. S. Lemos, Sandro Marraschi, et al.
The American Journal of Tropical Medicine and Hygiene 94 (5) 1090 (2016)
https://doi.org/10.4269/ajtmh.15-0575

Seroprevalence of Coxiella burnetii in domesticated and feral cats in eastern Australia

Amanda J. Shapiro, Katrina L. Bosward, Jane Heller and Jacqueline M. Norris
Veterinary Microbiology 177 (1-2) 154 (2015)
https://doi.org/10.1016/j.vetmic.2015.02.011

Serological Evidence of Coxiella burnetii Infection in Cattle and Goats in Bangladesh

Najmul Haider, Md. Shafiqur Rahman, Salah Uddin Khan, et al.
EcoHealth 12 (2) 354 (2015)
https://doi.org/10.1007/s10393-015-1011-x

Coxiella burnetii exposure in northern sea otters Enhydra lutris kenyoni

C Duncan, VA Gill, K Worman, et al.
Diseases of Aquatic Organisms 114 (1) 83 (2015)
https://doi.org/10.3354/dao02857

Mathematical method for calculating the sensitivity of a real-time trans-PCR analysis for Coxiella burnetii in goat milk

J.L. Fleitas, M.T. Tejedor-Junco, A. Santana, M. Andrada and A.S. Ramírez
Small Ruminant Research 123 (1) 149 (2015)
https://doi.org/10.1016/j.smallrumres.2014.09.011

A Probably Minor Role for Land-Applied Goat Manure in the Transmission of Coxiella burnetii to Humans in the 2007–2010 Dutch Q Fever Outbreak

René van den Brom, Hendrik-Jan Roest, Arnout de Bruin, et al.
PLOS ONE 10 (3) e0121355 (2015)
https://doi.org/10.1371/journal.pone.0121355

Q fever infection in dairy cattle herds: increased risk with high wind speed and low precipitation

S. NUSINOVICI, J. FRÖSSLING, S. WIDGREN, F. BEAUDEAU and A. LINDBERG
Epidemiology and Infection 143 (15) 3316 (2015)
https://doi.org/10.1017/S0950268814003926

Major differential gene regulation in Coxiella burnetii between in vivo and in vitro cultivation models

Runa Kuley, Ruth Bossers-deVries, Hilde E. Smith, et al.
BMC Genomics 16 (1) (2015)
https://doi.org/10.1186/s12864-015-2143-7

Seroepidemiology of Q fever in one-humped camel population in northeast Iran

Hossein Janati Pirouz, Gholamreza Mohammadi, Jalil Mehrzad, Mohammad Azizzadeh and Mohammad Hossein Nazem Shirazi
Tropical Animal Health and Production 47 (7) 1293 (2015)
https://doi.org/10.1007/s11250-015-0862-z

First Report of Coxiella burnetii Seroprevalence in Tibetan Sheep in China

Ming-Yang Yin, Si-Yuan Qin, Qi-Dong Tan, et al.
Vector-Borne and Zoonotic Diseases 15 (7) 419 (2015)
https://doi.org/10.1089/vbz.2014.1749

Treatment of Q fever in Beef Cattle in Queensland, Australia: Historical Context, Present Scenario and Future Perspectives

Dhruba Acharya
Journal of Dairy, Veterinary & Animal Research 2 (2) (2015)
https://doi.org/10.15406/jdvar.2015.02.00028

Economic aspects of Q fever control in dairy goats

M.A.P.M. van Asseldonk, D.M. Bontje, J.A. Backer, H.J.W.van Roermund and R.H.M. Bergevoet
Preventive Veterinary Medicine 121 (1-2) 115 (2015)
https://doi.org/10.1016/j.prevetmed.2015.06.010

Evaluation of Two PCR Tests for Coxiella burnetii Detection in Dairy Cattle Farms Using Latent Class Analysis

Simon Nusinovici, Aurélien Madouasse, Thierry Hoch, et al.
PLOS ONE 10 (12) e0144608 (2015)
https://doi.org/10.1371/journal.pone.0144608

Molecular characterization by MLVA of Coxiella burnetii strains infecting dairy cows and goats of north-eastern Italy

Letizia Ceglie, Eulalia Guerrini, Erika Rampazzo, Antonio Barberio, Jeroen J.H.C. Tilburg, Ferry Hagen, Laura Lucchese, Federica Zuliani, Stefano Marangon and Alda Natale
Microbes and Infection 17 (11-12) 776 (2015)
https://doi.org/10.1016/j.micinf.2015.09.029

Detection of Coxiella burnetii by PCR in bulk tank milk samples from dairy caprine herds in southeast of Iran

Mohammad Khalili, Hamze Ghobadian Diali, Hossein Norouzian Mirza and Seyed Morteza Mosavi
Asian Pacific Journal of Tropical Disease 5 (2) 119 (2015)
https://doi.org/10.1016/S2222-1808(14)60638-1

Practical Handbook of Microbiology, Third Edition

Sanjay Shukla and Steven Foley
Practical Handbook of Microbiology, Third Edition 775 (2015)
https://doi.org/10.1201/b17871-46