Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1

Ali Reza Saeedinia, Mehdi Zeinoddini, Masoud Soleimani and Majid Sadeghizadeh
Microbiological Research 170 114 (2015)
https://doi.org/10.1016/j.micres.2014.08.007

Isolation and Molecular Characterization ofBrucellaIsolates in Cattle Milk in Uganda

Denis Rwabiita Mugizi, Shaman Muradrasoli, Sofia Boqvist, et al.
BioMed Research International 2015 1 (2015)
https://doi.org/10.1155/2015/720413

Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice

Quang Lam Truong, Tae-Wook Hahn, Youngjae Cho, Kiju Kim and Bo-Kyoung Park
Microbiology 161 (11) 2137 (2015)
https://doi.org/10.1099/mic.0.000170

Immunogenicity and protective effect of recombinant Brucella abortus Ndk (rNdk) against a virulent strain B. abortus 544 infection in BALB/c mice

Huynh Tan Hop, Hannah Leah Simborio, Alisha Wehdnesday Bernardo Reyes, et al.
FEMS Microbiology Letters 362 (4) 1 (2015)
https://doi.org/10.1093/femsle/fnv003

PLGA (85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: A promising alternate to traditional adjuvants

Damini Singh, Vikas Kumar Somani, Somya Aggarwal and Rakesh Bhatnagar
Molecular Immunology 68 (2) 272 (2015)
https://doi.org/10.1016/j.molimm.2015.09.011

Recombinant L7/L12 protein entrapping PLGA (poly lactide-co-glycolide) micro particles protect BALB/c mice against the virulent B. abortus 544 infection

Damini Singh, Divya Goel and Rakesh Bhatnagar
Vaccine 33 (24) 2786 (2015)
https://doi.org/10.1016/j.vaccine.2015.04.030

Serological diagnosis of bovine brucellosis using B. melitensis strain B115

Marialaura Corrente, Costantina Desario, Antonio Parisi, et al.
Journal of Microbiological Methods 119 106 (2015)
https://doi.org/10.1016/j.mimet.2015.10.012

Immunization of BALB/c mice withBrucella abortus2308ΔwbkAconfers protection against wild-type infection

Zhi-qiang Li, Dan Gui, Zhi-hua Sun, et al.
Journal of Veterinary Science 16 (4) 467 (2015)
https://doi.org/10.4142/jvs.2015.16.4.467

Immunoproteomic identification of immunodominant antigens independent of the time of infection in Brucella abortus 2308-challenged cattle

Jin Ju Lee, Hannah Leah Simborio, Alisha Wehdnesday Bernardo Reyes, et al.
Veterinary Research 46 (1) (2015)
https://doi.org/10.1186/s13567-015-0147-6

Narrative overview of animal and human brucellosis in Morocco: intensification of livestock production as a driver for emergence?

Marie J. Ducrotoy, Khaoula Ammary, Hicham Ait Lbacha, et al.
Infectious Diseases of Poverty 4 (1) (2015)
https://doi.org/10.1186/s40249-015-0086-5

A Brucella melitensis M5-90 wboA deletion strain is attenuated and enhances vaccine efficacy

Zhi-Qiang Li, Jing-Xue Shi, Wen-Dong Fu, et al.
Molecular Immunology 66 (2) 276 (2015)
https://doi.org/10.1016/j.molimm.2015.04.004

Identification of a new immunogenic candidate conferring protection against Brucella melitensis infection in Mice

Amir Ghasemi, Amir-Hassan Zarnani, Abolfazl Ghoodjani, et al.
Molecular Immunology 62 (1) 142 (2014)
https://doi.org/10.1016/j.molimm.2014.06.017

Mechanism of Asp24 Upregulation in Brucella abortus Rough Mutant with a Disrupted O-Antigen Export System and Effect of Asp24 in Bacterial Intracellular Survival

Mingxing Tian, Jing Qu, Xiangan Han, et al.
Infection and Immunity 82 (7) 2840 (2014)
https://doi.org/10.1128/IAI.01765-14

A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection

Junbo Zhang, Shuanghong Yin, Fei Guo, et al.
Journal of Microbiology 52 (8) 681 (2014)
https://doi.org/10.1007/s12275-014-3689-9

Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice

Pedro Soler-Lloréns, Yolanda Gil-Ramírez, Ana Zabalza-Baranguá, et al.
Veterinary Research 45 (1) (2014)
https://doi.org/10.1186/s13567-014-0072-0

Effects of partial deletion of the wzm and wzt genes on lipopolysaccharide synthesis and virulence of Brucella abortus S19

XIURAN WANG, LIN WANG, TIANCHENG LU, et al.
Molecular Medicine Reports 9 (6) 2521 (2014)
https://doi.org/10.3892/mmr.2014.2104

Comparison of depopulation and S19‐RB51 vaccination strategies for control of bovine brucellosis in high prevalence areas

J. L. Saez, C. Sanz, M. Durán, et al.
Veterinary Record 174 (25) 634 (2014)
https://doi.org/10.1136/vr.101979

Immunogenic response induced by wzm and wzt gene deletion mutants from Brucella abortus S19

XIU-RAN WANG, GUANG-MOU YAN, RUI ZHANG, et al.
Molecular Medicine Reports 9 (2) 653 (2014)
https://doi.org/10.3892/mmr.2013.1810

A History of the Development ofBrucellaVaccines

Eric Daniel Avila-Calderón, Ahidé Lopez-Merino, Nammalwar Sriranganathan, Stephen M. Boyle and Araceli Contreras-Rodríguez
BioMed Research International 2013 1 (2013)
https://doi.org/10.1155/2013/743509

Isolation of a field strain of Brucella abortus from RB51-vaccinated- and brucellosis-seronegative bovine yearlings that calved normally

Beatriz Arellano-Reynoso, Francisco Suárez-Güemes, Félix Mejía Estrada, et al.
Tropical Animal Health and Production 45 (2) 695 (2013)
https://doi.org/10.1007/s11250-012-0252-8

Deletion of the GI-2 integrase and the wbkA flanking transposase improves the stability of Brucella melitensis Rev 1 vaccine

Marcos Mancilla, María-Jesús Grilló, María-Jesús de Miguel, et al.
Veterinary Research 44 (1) (2013)
https://doi.org/10.1186/1297-9716-44-105

Radiolabeling and biodistribution studies of polymeric nanoparticles as adjuvants for ocular vaccination against brucellosis

M. Sánchez-Martínez, R. Da Costa Martins, G. Quincoces, et al.
Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) 32 (2) 92 (2013)
https://doi.org/10.1016/j.remnie.2013.01.009

A “One Health” surveillance and control of brucellosis in developing countries: Moving away from improvisation

Jacques Godfroid, Sascha Al Dahouk, Georgios Pappas, et al.
Comparative Immunology, Microbiology and Infectious Diseases 36 (3) 241 (2013)
https://doi.org/10.1016/j.cimid.2012.09.001

In Vivo Differences in the Virulence, Pathogenicity, and Induced Protective Immunity of wboA Mutants from Genetically Different Parent Brucella spp

Zhen Wang, Jianrui Niu, Shuangshan Wang, Yanli Lv and Qingmin Wu
Clinical and Vaccine Immunology 20 (2) 174 (2013)
https://doi.org/10.1128/CVI.00573-12

Brucella melitensis 16MΔhfq attenuation confers protection against wild‐type challenge in BALB/c mice

Junbo Zhang, Fei Guo, Chuangfu Chen, et al.
Microbiology and Immunology 57 (7) 502 (2013)
https://doi.org/10.1111/1348-0421.12065

Molecular characterization of Brucella melitensis Rev.1 strain in aborted sheep and goats in Iran

Abolfazl Saeedzadeh, Hassan Sharifiyazdi and Roya Firouzi
Comparative Clinical Pathology 22 (3) 409 (2013)
https://doi.org/10.1007/s00580-012-1424-7

Brucellosis seroprevalence in Bali cattle with reproductive failure in South Sulawesi and Brucella abortus biovar 1 genotypes in the Eastern Indonesian archipelago

Hanah Muflihanah, Mochammad Hatta, Ente Rood, et al.
BMC Veterinary Research 9 (1) (2013)
https://doi.org/10.1186/1746-6148-9-233

Radiomarcaje y estudios de biodistribución de nanopartículas poliméricas como adyuvantes para la vacunación oftálmica frente a la brucelosis

M. Sánchez-Martínez, R. da Costa Martins, G. Quincoces, et al.
Revista Española de Medicina Nuclear e Imagen Molecular 32 (2) 92 (2013)
https://doi.org/10.1016/j.remn.2012.11.005

Immune response and serum bactericidal activity against Brucella ovis elicited using a short immunization schedule with the polymeric antigen BLSOmp31 in rams

Alejandra G. Díaz, María Clausse, Fernando A. Paolicchi, et al.
Veterinary Immunology and Immunopathology 154 (1-2) 36 (2013)
https://doi.org/10.1016/j.vetimm.2013.04.003

Abortion and premature birth in cattle following vaccination with Brucella abortus strain RB51

Amanda M. Fluegel Dougherty, Todd E. Cornish, Donal O’Toole, Amy M. Boerger-Fields, Owen L. Henderson and Ken W. Mills
Journal of Veterinary Diagnostic Investigation 25 (5) 630 (2013)
https://doi.org/10.1177/1040638713499570

Progress in Brucella vaccine development

Xinghong Yang, Jerod A. Skyberg, Ling Cao, Beata Clapp, Theresa Thornburg and David W. Pascual
Frontiers in Biology 8 (1) 60 (2013)
https://doi.org/10.1007/s11515-012-1196-0

Invasive Escherichia coli vaccines expressing Brucella melitensis outer membrane proteins 31 or 16 or periplasmic protein BP26 confer protection in mice challenged with B. melitensis

V.K. Gupta, G. Radhakrishnan, J. Harms and G. Splitter
Vaccine 30 (27) 4017 (2012)
https://doi.org/10.1016/j.vaccine.2012.04.036

Bacteriological and molecular investigation of B. melitensis in dairy cows in Iran

Hassan Sharifiyazdi, Masoud Haghkhah, Ali Mohammad Behroozikhah and Ebrahim Nematgorgani
Comparative Clinical Pathology 21 (3) 269 (2012)
https://doi.org/10.1007/s00580-010-1090-6

Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease

Raquel Da Costa Martins, Juan M Irache and Carlos Gamazo
Expert Review of Vaccines 11 (1) 87 (2012)
https://doi.org/10.1586/erv.11.172

Biodefense Research Methodology and Animal Models, Second Edition

Bret Purcell and Robert Rivard
Biodefense Research Methodology and Animal Models, Second Edition 197 (2012)
https://doi.org/10.1201/b11523-12

Genome Sequences of Three Live Attenuated Vaccine Strains of Brucella Species and Implications for Pathogenesis and Differential Diagnosis

Yufei Wang, Yuehua Ke, Zhoujia Wang, et al.
Journal of Bacteriology 194 (21) 6012 (2012)
https://doi.org/10.1128/JB.01483-12

Serological profile of buffalo (Bubalus bubalis) female calves vaccinated with standard Brucella abortus strain 19 vaccine using rose bengal, 2-mercaptoethanol and complement fixation tests

G. Nardi Júnior, M.G. Ribeiro, A.M. Jorge, J. Megid and L.M.P. Silva
Biologicals 40 (2) 158 (2012)
https://doi.org/10.1016/j.biologicals.2011.09.016

Spontaneous Excision of the O-Polysaccharide wbkA Glycosyltranferase Gene Is a Cause of Dissociation of Smooth to Rough Brucella Colonies

Marcos Mancilla, Clara M. Marín, José M. Blasco, et al.
Journal of Bacteriology 194 (8) 1860 (2012)
https://doi.org/10.1128/JB.06561-11

Immunogenicity and protective potential of a bacterially expressed recombinant dihydrolipoamide succinyltransferase (rE2o) of Brucella abortus in BALB/c mice

Shailendra Kumar Verma, Shikha Jain and Subodh Kumar
World Journal of Microbiology and Biotechnology 28 (7) 2487 (2012)
https://doi.org/10.1007/s11274-012-1056-8

Altered Transcriptome of the B. melitensis Vaccine Candidate 16MΔvjbR, Implications for Development of Genetically Marked Live Vaccine

Yuehua Ke, Yufei Wang, Xitong Yuan, Zhijun Zhong, Qing Qu, Dongsheng Zhou, Xiaotao Zeng, Jie Xu, Zhoujia Wang, Xinying Du, Tongkun Wang, Ruifu Yang, Qing Zhen, Yaqin Yu, Liuyu Huang and Zeliang Chen
Indian Journal of Microbiology 52 (4) 575 (2012)
https://doi.org/10.1007/s12088-012-0293-8

What have we learned from brucellosis in the mouse model?

María-Jesús Grilló, José María Blasco, Jean Pierre Gorvel, Ignacio Moriyón and Edgardo Moreno
Veterinary Research 43 (1) (2012)
https://doi.org/10.1186/1297-9716-43-29

The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

Raquel Conde-Álvarez, Vilma Arce-Gorvel, Maite Iriarte, et al.
PLoS Pathogens 8 (5) e1002675 (2012)
https://doi.org/10.1371/journal.ppat.1002675

Isolation of Brucella melitensis from a RB51-vaccinated seronegative goat

Enrique Herrera, Aldo Rivera, E. Gabriela Palomares, Rigoberto Hernández-Castro and Efrén Díaz-Aparicio
Tropical Animal Health and Production 43 (6) 1069 (2011)
https://doi.org/10.1007/s11250-011-9822-4

Antigenic, Immunologic and Genetic Characterization of Rough Strains B.abortus RB51, B.melitensis B115 and B.melitensis B18

Rosanna Adone, Michele Muscillo, Giuseppina La Rosa, et al.
PLoS ONE 6 (10) e24073 (2011)
https://doi.org/10.1371/journal.pone.0024073

The 16MΔvjbR as an ideal live attenuated vaccine candidate for differentiation between Brucella vaccination and infection

Yufei Wang, Yaoxia Bai, Qing Qu, et al.
Veterinary Microbiology 151 (3-4) 354 (2011)
https://doi.org/10.1016/j.vetmic.2011.03.031

Protective Live Oral Brucellosis Vaccines Stimulate Th1 and Th17 Cell Responses

Beata Clapp, Jerod A. Skyberg, Xinghong Yang, et al.
Infection and Immunity 79 (10) 4165 (2011)
https://doi.org/10.1128/IAI.05080-11

Control and Eradication of Brucella melitensis Infection in Sheep and Goats

José M. Blasco and Baldomero Molina-Flores
Veterinary Clinics of North America: Food Animal Practice 27 (1) 95 (2011)
https://doi.org/10.1016/j.cvfa.2010.10.003

Confronting the barriers to develop novel vaccines against brucellosis

Sérgio Costa Oliveira, Guillermo Hernán Giambartolomei and Juliana Cassataro
Expert Review of Vaccines 10 (9) 1291 (2011)
https://doi.org/10.1586/erv.11.110

Eradication of bovine brucellosis in the Azores, Portugal—Outcome of a 5-year programme (2002–2007) based on test-and-slaughter and RB51 vaccination

J.M. Blasco and I. Moriyon
Preventive Veterinary Medicine 94 (1-2) 154 (2010)
https://doi.org/10.1016/j.prevetmed.2009.10.009

An IL-15 adjuvant enhances the efficacy of a combined DNA vaccine against Brucella by increasing the CD8+ cytotoxic T cell response

Xi-Dan Hu, Su-Ting Chen, Jia-Yun Li, et al.
Vaccine 28 (12) 2408 (2010)
https://doi.org/10.1016/j.vaccine.2009.12.076

Mass vaccination as a complementary tool in the control of a severe outbreak of bovine brucellosis due to Brucella abortus in Extremadura, Spain

Cristina Sanz, José Luis Sáez, Julio Álvarez, et al.
Preventive Veterinary Medicine 97 (2) 119 (2010)
https://doi.org/10.1016/j.prevetmed.2010.08.003

DiscordantBrucella melitensisAntigens Yield Cognate CD8+T Cells In Vivo

Marina A. Durward, Jerome Harms, Diogo M. Magnani, Linda Eskra and Gary A. Splitter
Infection and Immunity 78 (1) 168 (2010)
https://doi.org/10.1128/IAI.00994-09

MHC class II DRB1 gene polymorphism in the pathogenesis of Maedi–Visna and pulmonary adenocarcinoma viral diseases in sheep

Amaia Larruskain, Esmeralda Minguijón, Koldo García-Etxebarria, et al.
Immunogenetics 62 (2) 75 (2010)
https://doi.org/10.1007/s00251-009-0419-2

Variable-number tandem repeat markers for identification of Brucella abortus 82 and 75/79-AV vaccine strains

Yury K. Kulakov, Michael M. Zheludkov and Oleg D. Sclyarov
Vaccine 28 F41 (2010)
https://doi.org/10.1016/j.vaccine.2010.03.051

Genomic Island 2 Is an Unstable Genetic Element Contributing toBrucellaLipopolysaccharide Spontaneous Smooth-to-Rough Dissociation

Marcos Mancilla, Ignacio López-Goñi, Ignacio Moriyón and Ana María Zárraga
Journal of Bacteriology 192 (24) 6346 (2010)
https://doi.org/10.1128/JB.00838-10

Effect of polymorphisms in the Slc11a1 coding region on resistance to brucellosis by macrophages in vitro and after challenge in two Bos breeds (Blanco Orejinegro and Zebu)

Rodrigo Martínez, Susana Dunner, Rubén Toro, et al.
Genetics and Molecular Biology 33 (3) 463 (2010)
https://doi.org/10.1590/S1415-47572010000300014

Importance of Lipopolysaccharide and Cyclicβ-1,2-Glucans inBrucella-Mammalian Infections

Andreas F. Haag, Kamila K. Myka, Markus F. F. Arnold, Paola Caro-Hernández and Gail P. Ferguson
International Journal of Microbiology 2010 1 (2010)
https://doi.org/10.1155/2010/124509

Simultaneous expression of homologous and heterologous antigens in rough, attenuated Brucella melitensis

Aloka B. Bandara, Sherry A. Poff-Reichow, Mikeljon Nikolich, David L. Hoover, Nammalwar Sriranganathan, Gerhardt G. Schurig, Victor Dobrean and Stephen M. Boyle
Microbes and Infection 11 (3) 424 (2009)
https://doi.org/10.1016/j.micinf.2009.01.003

Shedding of Brucella abortus rough mutant strain RB51 in milk of water buffalo (Bubalus bubalis)

Mariangela Longo, Karina Mallardo, Serena Montagnaro, et al.
Preventive Veterinary Medicine 90 (1-2) 113 (2009)
https://doi.org/10.1016/j.prevetmed.2009.03.007

Eradication of bovine brucellosis in the Azores, Portugal—Outcome of a 5-year programme (2002–2007) based on test-and-slaughter and RB51 vaccination

H. Martins, B. Garin-Bastuji, F. Lima, et al.
Preventive Veterinary Medicine 90 (1-2) 80 (2009)
https://doi.org/10.1016/j.prevetmed.2009.04.002

Rough mutants defective in core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infection of sheep

María B. Barrio, María J. Grilló, Pilar M. Muñoz, et al.
Vaccine 27 (11) 1741 (2009)
https://doi.org/10.1016/j.vaccine.2009.01.025

A Combined DNA Vaccine Provides Protective Immunity AgainstMycobacterium bovisandBrucella abortusin Cattle

Xi-Dan Hu, Da-Hai Yu, Su-Ting Chen, Shu-Xia Li and Hong Cai
DNA and Cell Biology 28 (4) 191 (2009)
https://doi.org/10.1089/dna.2008.0790

Individual heterogeneity in erythrocyte susceptibility toBabesia divergensis a critical factor for the outcome of experimental spleen-intact sheep infections

Laurence Malandrin, Maggy Jouglin, Emmanuelle Moreau and Alain Chauvin
Veterinary Research 40 (4) 25 (2009)
https://doi.org/10.1051/vetres/2009008

Zoonotic tuberculosis and brucellosis in Africa: neglected zoonoses or minor public-health issues? The outcomes of a multi-disciplinary workshop

T. Marcotty, F. Matthys, J. Godfroid, et al.
Annals of Tropical Medicine & Parasitology 103 (5) 401 (2009)
https://doi.org/10.1179/136485909X451771

Design and influence of γ-irradiation on the biopharmaceutical properties of nanoparticles containing an antigenic complex from Brucella ovis

Raquel Da Costa Martins, Carlos Gamazo and Juan Manuel Irache
European Journal of Pharmaceutical Sciences 37 (5) 563 (2009)
https://doi.org/10.1016/j.ejps.2009.05.002

Genome Mapping and Genomics in Animal-Associated Microbes

Nammalwar Sriranganathan, Mohamed N. Seleem, Steven C. Olsen, et al.
Genome Mapping and Genomics in Animal-Associated Microbes 1 (2009)
https://doi.org/10.1007/978-3-540-74042-1_1

Evaluation of Vaccination with Brucella abortus RB51 Strain in Herds Naturally Infected with Brucellosis in Productive Systems Found in Tropical Climate

A. Peniche Cardena, D. Martinez Herrera, J.L. Franco Zamora, et al.
International Journal of Dairy Science 4 (3) 109 (2009)
https://doi.org/10.3923/ijds.2009.109.116

Efficacy of strain RB51 vaccine in protecting infection and vertical transmission against Brucella abortus in Sprague-Dawley rats

Md. Ariful Islam, Mst. Minara Khatun, Byeong-Kirl Baek and Sung-Il Lee
Journal of Veterinary Science 10 (3) 211 (2009)
https://doi.org/10.4142/jvs.2009.10.3.211

A combined vaccine against Brucella abortus and infectious bovine rhinotracheitis

Govindasamy Kamaraj, Shankar R. Chinchkar, Lingala Rajendra and Villuppanoor Alwar Srinivasan
Indian Journal of Microbiology 49 (2) 161 (2009)
https://doi.org/10.1007/s12088-009-0028-7

Cloning, expression and immunogenicity of the translation initiation factor 3 homologue of Brucella abortus

Marcela González, Edilia Andrews, Hugo Folch, et al.
Immunobiology 214 (2) 113 (2009)
https://doi.org/10.1016/j.imbio.2008.07.004

Protection of mice from Brucella infection by immunization with attenuated Salmonellaenterica serovar typhimurium expressing A L7/L12 and BLS fusion antigen of Brucella

Zhongpeng Zhao, Min Li, Deyan Luo, et al.
Vaccine 27 (38) 5214 (2009)
https://doi.org/10.1016/j.vaccine.2009.06.075

Occupational infection due to Brucella abortus S19 among workers involved in vaccine production in Argentina

J.C. Wallach, M.C. Ferrero, M. Victoria Delpino, C.A. Fossati and P.C. Baldi
Clinical Microbiology and Infection 14 (8) 805 (2008)
https://doi.org/10.1111/j.1469-0691.2008.02029.x

Milk Production Increase in a Dairy Farm under a Six‐Year Brucellosis Control Program

Enrique Herrera, Gabriela Palomares and Efrén Díaz‐Aparicio
Annals of the New York Academy of Sciences 1149 (1) 296 (2008)
https://doi.org/10.1196/annals.1428.011

Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export

David González, María-Jesús Grilló, María-Jesús De Miguel, et al.
PLoS ONE 3 (7) e2760 (2008)
https://doi.org/10.1371/journal.pone.0002760

Brucella melitensisB115-based complement fixation test to detect antibodies induced byBrucellarough strains

R. Adone, M. Francia and F. Ciuchini
Journal of Applied Microbiology 105 (2) 567 (2008)
https://doi.org/10.1111/j.1365-2672.2008.03787.x

Interaction ofBrucella suisandBrucella abortusRough Strains with Human Dendritic Cells

Elisabeth Billard, Jacques Dornand and Antoine Gross
Infection and Immunity 75 (12) 5916 (2007)
https://doi.org/10.1128/IAI.00931-07

Assessment of genetic stability of Brucella melitensis Rev 1 vaccine strain by multiple-locus variable-number tandem repeat analysis

David García-Yoldi, Philippe Le Fleche, Clara M. Marín, et al.
Vaccine 25 (15) 2858 (2007)
https://doi.org/10.1016/j.vaccine.2006.09.063

Virulence factors in brucellosis: implications for aetiopathogenesis and treatment

Emilie Fugier, Georgios Pappas and Jean-Pierre Gorvel
Expert Reviews in Molecular Medicine 9 (35) 1 (2007)
https://doi.org/10.1017/S1462399407000543

A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev.1 vaccination

Juliana Cassataro, Karina A. Pasquevich, Silvia M. Estein, et al.
Vaccine 25 (22) 4437 (2007)
https://doi.org/10.1016/j.vaccine.2007.03.028

Characterization of the Transitory Immune Response in Cows Immunized with RB51 and its Implication on Diagnosis Within Brucellosis Endemic Zones

Efren Diaz-Aparicio ., Beatriz Arellano-Rey ., Enrique Herrera Lope ., Marisela Leal Hernan . and Francisco Suarez-Gam .
International Journal of Dairy Science 2 (4) 364 (2007)
https://doi.org/10.3923/ijds.2007.364.371

A combined DNA vaccine enhances protective immunity against Mycobacterium tuberculosis and Brucella abortus in the presence of an IL-12 expression vector

Da-Hai Yu, Min Li, Xi-Dan Hu and Hong Cai
Vaccine 25 (37-38) 6744 (2007)
https://doi.org/10.1016/j.vaccine.2007.06.061

Current Status of Veterinary Vaccines

Els N. T. Meeusen, John Walker, Andrew Peters, Paul-Pierre Pastoret and Gregers Jungersen
Clinical Microbiology Reviews 20 (3) 489 (2007)
https://doi.org/10.1128/CMR.00005-07

A Combined DNA Vaccine Encoding BCSP31, SOD, and L7/L12 Confers High Protection Against Brucella abortus 2308 by Inducing Specific CTL Responses

Da-Hai Yu, Xi-Dan Hu, Hong Cai and Min Li
DNA and Cell Biology 26 (6) 435 (2007)
https://doi.org/10.1089/dna.2006.0552

Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice

Maria Victoria Delpino, Silvia Marcela Estein, Carlos Alberto Fossati, Pablo César Baldi and Juliana Cassataro
Vaccine 25 (37-38) 6721 (2007)
https://doi.org/10.1016/j.vaccine.2007.07.002

Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host

Michel S. Zygmunt, Sue D. Hagius, Joel V. Walker and Philip H. Elzer
Microbes and Infection 8 (14-15) 2849 (2006)
https://doi.org/10.1016/j.micinf.2006.09.002