Humoral immune response in hens naturally infected with *Salmonella Enteritidis* against outer membrane proteins and other surface structural antigens

Javier OCHOA-REPÁRAZ\(^a\), Begoña SESMA\(^b\), Miguel ÁLVAREZ\(^c\), M. Jesús RENEDO\(^d\), Juan M. IRACHE\(^d\), Carlos GAMAZO\(^a,\(^*\)

\(^a\) Departamento de Microbiología, Universidad de Navarra, 31008 Pamplona, Spain
\(^b\) Instituto Salud Pública de Navarra, 31004 Pamplona, Spain
\(^c\) Lab. Municipal de Pamplona, 31004 Pamplona, Spain
\(^d\) Centro Galénico, Universidad de Navarra, 31008 Pamplona, Spain

(Received 8 September 2003; accepted 19 December 2003)

Abstract – A simple procedure for obtaining surface exposed antigens of *Salmonella Enteritidis* is described. A heat treatment of whole bacteria in saline solution induced the release of small membrane vesicles containing outer membrane components as well as surface appendage components, such as fimbriae and flagellin. The characterization of the structural components of this extract, called HE, was established by SDS-PAGE and immunoblotting using polyclonal and monoclonal specific antibodies. Five major groups of proteins were identified: flagellin, porins, OmpA, SEF21 and SEF14 fimbriae. The immunogenicity of these proteins was studied by immunoblotting with serum samples from naturally infected hens. Flagellin, porins, OmpA, SEF14 and SEF21 fimbriae were immunogenic in the *S. Enteritidis* infected hens (frequency of reactants: 47.3, 97.3, 64.7, 50.0 and 60.8%, respectively); porins also reacted with sera from non infected hens (66.7%). The immunogenicity of these antigens in infected birds provide promise that they may serve as components of an effective subcellular vaccine for poultry salmonellosis.

corresponding author: cgamazo@unav.es

1. INTRODUCTION

Salmonella enterica serovar Enteritidis (*Salmonella* Enteritidis, SE) is a major cause of human food-borne illness and is the most frequent serovar detected in outbreaks of human salmonellosis [18]. Poultry products are known to be a significant reservoir for *Salmonella* and the most important source of SE infection in humans [7, 14, 19, 22].

Salmonella possess different surface structures that can induce protective immune responses in experimentally infected chickens [16, 30]. Immunoblotting has been used previously to recognize antigenic polypeptides of SE in experimentally infected chickens [1]. Other workers have also used experimentally infected birds, by ELISA and other serological techniques, to determine the antigenicity of lipopolysaccharide (LPS), flagella and fimbriae [12, 23, 25, 28],
or whole cells [6]. However, to our knowledge, there is not any report in the literature showing the reactivity by immunoblotting of the SE antigens during the course of a natural infection in hens.

For purposes of vaccine development, the present study was accomplished to determine the main immunogenic outer components of SE in the course of a natural infection in hens. For this, a simple procedure for obtaining superficial antigens of SE is also described.

2. MATERIALS AND METHODS

2.1. Serum samples

A total of 104 serum samples from laying hens (7–11 months old) were studied. Serum samples in group 1 (n = 74) were obtained from S. Enteritidis naturally infected hens, from different flocks (as confirmed by rectal swab culture) and serum samples in group 2 (n = 30) were taken from salmonelae free hens (obtained from CESAC, Reus, Girona, Spain). Positive and negative control serum sample pools were prepared by pooling ten individual sera from infected hens and ten individual sera from salmonelae free hens, respectively. These controls were employed to validate the immunoblotting procedure used in this study.

2.2. Bacterial strains and growth conditions

The antigenic extract was obtained from the clinically isolated S. Enteritidis strain 3934 (Universitary Hospital of Navarra, Spain), that was grown in trypticase-soy broth (Biomérieux, Marcy-l’Étoile, France) in a rotary shaker at 37 °C for 24 h.

2.3. Antigenic extract of S. Enteritidis

A hot saline extract of S. Enteritidis (HE) was obtained following a procedure previously used for the extraction of some Brucella antigens [10]. Briefly, live cells were suspended in physiological saline (10 g of packed cells per 100 mL) and heated in flowing steam for 15 min. After centrifugation at 12 000 × g for 15 min, the supernatant was dialyzed for two days at 4 °C against several changes of deionized water. The dialyzed material was centrifuged for 5 h at 100 000 × g, and the pellet (HE extract) was resuspended in deionized water, lyophilized and stored at room temperature.

Outer membrane proteins (OMPs) from S. Enteritidis were prepared by sequential detergent extraction of cell envelopes [8]. Briefly, after the disruption of cells by high pressure in a French Press (Amino-SLM Instruments Inc, Urbana, Illinois, USA), the inner membranes of the bacteria were solubilized after treatment with 1% Sarkosyl (N-Lauryl sarcosine, Sigma Chemical Co., St. Louis, USA) and centrifuging (20 000 × g; 30 min). The sediment was suspended in 0.5 M Tris-HCl (pH 6.8) with 10% SDS (Lauryl sulfate, Sigma) and centrifuged (20 000 × g; 30 min). The OMPs of S. Enteritidis were present in the final supernatant.

2.4. Electron microscopy

HE was resuspended in deionized water and stained with 4% Uranyl acetate (Agar scientific) for 15 min and with lead citrate (Agar scientific) for 15 min and then was examined with a Hitachi 1100 transmission electron microscope (Hitachi Scientific Instruments, California, USA) operating at 100 kV.

2.5. Chemical analysis

Total protein content was determined colorimetrically [17], with bovine serum albumin as the standard. The LPS content of HE was estimated by colorimetric determination of 2-keto-3-deoxyoctonate corrected for 2-deoxyaldoses, performed by the method of Warren [32] as modified by Osborn [21].
2.6. SDS-PAGE and immunoblotting procedure

SDS-PAGE was performed in 15% acrylamide slabs by the method of Laemmli [15]. The gels were stained by the alkaline silver-glutaraldehyde method for proteins. The apparent molecular masses of the proteins present in the antigenic extracts were determined by comparing their electrophoretic mobility with that of the following molecular mass markers (Rainbow colored protein molecular weight marker, Amersham pharmacia biotech, Freiburg, Germany): myosin (220 kDa); phosphorylase b (97 kDa); bovine serum albumin (66 kDa); ovalbumin (45 kDa); carbonic anhydrase (30 kDa); trypsin inhibitor (20.1 kDa); lysozyme (14.3 kDa).

Immunoblotting was carried out as described by Towbin [31] with the following modifications: after SDS-PAGE, the gel was transferred in a transfer buffer (0.2 M glycine; 24 mM Tris; 10% methanol [pH 8.3]) to PVDF (polyvinylidene fluoride papers, pore size 0.45 µm, Schleicher and Schuell, Dassel, Germany) using a semidry electroblotter (Bio-rad Laboratories, Richmond, USA) (200 mA; 5 V; 30 min). The blots were placed in blocking buffer (3% skimmed milk and 0.15% Tween-20 in 10 mM phosphate-buffered saline [pH 7.4]) overnight at room temperature, and then they were incubated for 4 h at room temperature with hen serum sample diluted 1:100 in blocking buffer without skimmed milk. After four washes in blocking buffer without skimmed milk, the blots were incubated for one hour at room temperature with the immunonoconjugate: peroxidase-conjugated rabbit anti-chicken IgG (Nordic Labs, Tilburg, The Netherlands), diluted 1:1000 in the same buffer. The blots were washed four times more, and were developed by incubation in a solution containing H$_2$O$_2$ and 4-chloro, 1-naphtol for 20 min in the dark.

The frequency of the reactants to the major structural components of HE extract was determined by computing the number of sera of natural infected hens that reacted against these components. Positive and negative control serum pools were used in all the experiments as an internal reference to validate the comparison of the experiments.

2.7. Identification of the major components of HE

The presence of flagellin (FliC) and SEF14 were confirmed with specific monoclonal antibodies (kindly provided by Veterinary Laboratories Agency, Surrey, UK). SEF14 and SEF21 bands were recognized by comparison with the corresponding purified proteins obtained after a purification process based on a selective precipitation with (NH$_4$)$_2$SO$_4$ (50% saturation); the starting material was a crude extract enriched in fimbriae and flagella, according to the method of Freurier et al. [20]. LPS and porins were recognized with polyclonal serum from rabbits hyper-immunized with LPS and porins, respectively (sera obtained from the Department of Microbiology, University of Navarra, Spain). OmpA was identified based on its different mobility in SDS-PAGE when the samples are incubated in SDS sample buffer at 100 °C or at room temperature [9].

3. RESULTS

3.1. Characterization of HE extract

The electron microscopy studies suggest that after a heat treatment of whole cells small spherical vesicles ranging from 15 to 40 nm were released. Other filamentous appendages were seen (Fig. 1). This material was called the HE extract. The protein content of the HE extract obtained from S. Enteritidis 3934 was 31.35 ± 4.55%, and the LPS percentage was 69.14 ± 1.90% (n = 10).

The SDS-PAGE profile of HE was similar to OMPs enriched fraction, containing
porins (35–36 kDa) and OmpA (34 kDa). There are other major proteins in the HE extract that appear by SDS-PAGE with apparent molecular weights of 22.1, 23.1, 25.2, 26.8, 28.4, 30.3 and 45.1 kDa (Figs. 2A and 2B). Their presence in the outer membrane extract (sequential detergent extraction from cell envelopes, see Materials and Methods, Sect. 2.3) strongly suggests their OMP nature. In addition, HE comprised surface appendages such as flagellin (53 kDa), SEF14 (14 kDa) and SEF21 (21 kDa) (Fig. 2A).

3.2. Immunoblot analyses of the HE

Figure 3 shows some representative results of the immunoblotting performed. The higher frequency of reactants of naturally infected hens sera was observed against porins (97.3%), OMP of 22.1 kDa (66.2%), and OmpA (64.7%), although a reactivity against SEF14, SEF21, LPS and flagellin was also seen (50.0%, 60.8%, 81.8% and 47.3%) (Tab. I). A reaction against the other OMPs defined by its molecular weight was observed between 50.0% and 63.5%. There was a frequent but weak reactivity to LPS and porins when HE was tested against the sera from healthy hens (86.7% and 66.7%, respectively), in contrast to the low percentage of seropositivity against the rest of the components (SEF14, 6.6%; SEF21, 3.3%; OmpA, 6.7%; Flagella, 0.0%). These results suggest that there is a specific reactivity of sera from naturally infected hens with S. Enteritidis against SEFs, OmpA and flagella. By contrast, the reaction against LPS and porins could not be distinguished between non-infected and naturally infected hens.
4. DISCUSSION

In order to determine the most immunogenic components of the surface of *S. Enteritidis*, we studied by immunoblotting the reaction of sera from naturally infected reproductive hens to an extract that contains surface proteins and external appendages of the bacteria. The immunogenicity of these components during natural infection would indicate their possible role as inductive antigens in a subcellular vaccine for its use in poultry.

Salmonella possess surface structures that can induce protective humoral and cellular immune responses following experimental infection in poultry [16, 30]. These components include LPS, OMPs, fimbriae and flagellin. We obtained an antigenic extract of *S. Enteritidis* (called HE) by a simple procedure that, instead of other antigenic extracts found in the literature, contains

Figure 3. Immunoblot analyses of sera from hens bacteriologically positive (A) and negative (B) for *Salmonella* Enteritidis against the HE components. Lane numbers correspond to animal reference numbers.
outer membrane antigens together with SEFs and flagellin, the main structural surface components of the bacteria.

In this study, performed with sera from naturally infected laying hens, the strongest response (higher number of hen reactants) was observed against porins (97.3%) and OmpA (64.7%), although antibodies against SEF14, SEF21, LPS and flagellin were also seen (50.0%, 60.8%, 81.8% and 47.3%). The reactivity against SEF14, SEF21 and other unidentified OMPs, with apparent molecular masses of 30.5, 35.8, 41, and 55, may correspond with some of the major antigenic proteins from whole cells of S. Enteritidis described by Barbour et al. [1] that reacted with sera from experimentally infected chickens. These authors studied the chronological recognition of polypeptides from the whole cells of S. Enteritidis, but we can not discuss this aspect since we tested serum samples from naturally infected hens.

Our results indicate a frequent although weak reaction against LPS (86.7%) and porins (66.7%) with the sera of healthy hens, probably as a result of the immune cross-reaction between S. Enteritidis with other enterobacteria commonly in contact with the animals. Thus, the cross-reactivity among the Enterobacteriaceae family is, at least in part, caused by an immune response directed against the immunodominant “O” antigen of LPS [3, 4, 13]. Porins are also conserved in many Gram-negative species, including Enterobacteriaceae, therefore, it was not unexpected to find antibodies in healthy hens against these proteins [26, 27]. These cross-reactions were not observed in the case of flagellin and fimbriae, indicating the specificity of the antibodies generated against these surface components during an infection by S. Enteritidis in hens. In fact, different authors have taken advantage of this property employing these components individually for the development of specific serodiagnostic tests, like SEF14 and flagellin in ELISA [2, 5, 11, 24, 29, 33].

Our results provide evidence that the components of the HE extract, highly immunogenic in the course of a natural infection in hens, might serve as effective components of a subcellular vaccine. The protective efficacy of these extracts is currently under investigation.

ACKNOWLEDGMENTS

This work was supported by a grant from the “Departamento de Educación del Gobierno de Navarra”, Spain (Grant 96/2000). Javier Ochoa is being supported by a grant from the “Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-Spain)”. The authors wish to thank Mª José Solsona (CESAC, Reus, Spain) and Veterinary Laboratories Agency (Surrey, UK) for kindly supplying the naturally infected hens sera and monoclonal antibodies against SEF14 and SEF21 respectively, employed in this study.
REFERENCES

To access this journal online:
www.edpsciences.org