Free access
Review
Issue
Vet. Res.
Volume 41, Number 6, November–December 2010
Emerging and re-emerging animal viruses
Number of page(s) 14
DOI http://dx.doi.org/10.1051/vetres/2010039
Published online 24 June 2010
How to cite this article Vet. Res. (2010) 41:67
  • Anderson J., Vossbrinck C., Andreadis T., Iton A., Beckwith W., Mayo D., Characterization of West Nile virus from five species of mosquitoes, nine species of birds, and one mammal, Ann. NY Acad. Sci. (2001) 951:328–331. [CrossRef]
  • Andrews D.M., Matthews V.B., Sammels L.M., Carrello A.C., McMinn P.C., The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system, J. Virol. (1999) 73:8781–8790. [PubMed]
  • Artsob H., Gubler D.J., Enria D.A., Morales M.A., Pupo M., Bunning M.L., Dudley J.P., West Nile virus in the New World: trends in the spread and proliferation of West Nile virus in the Western Hemisphere, Zoonoses Public Health (2009) 56:357–369. [CrossRef] [PubMed]
  • Asnis D.S., Conetta R., Teixeira A.A., Waldman G., Sampson B.A., The West Nile virus outbreak of 1999 in New York: the Flushing hospital experience, Clin. Infect. Dis. (2000) 30:413–418. [CrossRef] [PubMed]
  • Asnis D.S., Conetta R., Waldman G., Teixeira A.A., The West Nile virus encephalitis outbreak in the United States (1999–2000): from Flushing, New York, to beyond its borders, Ann. NY Acad. Sci. (2001) 951:161–171. [CrossRef]
  • Banet-Noach C., Malkinson M., Brill A., Samina I., Yadin H., Weisman Y., et al., Phylogenetic relationships of West Nile virus isolated from birds and horses in Israel from 1997–2001, Virus Genes (2003) 26:135–141. [CrossRef] [PubMed]
  • Baqar S., Hayes C.G., Murphy J.R., Watts D.M., Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes, Am. J. Trop. Med. Hyg. (1993) 48:757–762. [PubMed]
  • Barrera R., Hunsperger E., Muñoz-Jordán J.L., Amador M., Diaz A., Smith J., et al., First isolation of West Nile virus in the Caribbean, Am. J. Trop. Med. Hyg. (2008) 78:666–668. [PubMed]
  • Beasley D.W.C., Li L., Suderman M.T., Barrett A.D., West Nile virus strains differ in mouse neurovirulence and binding to mouse or human brain membrane receptor preparations, Ann. NY Acad. Sci. (2001) 951:332–335. [CrossRef]
  • Beasley D.W.C., Li L., Suderman M., Barrett A., Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype, Virology (2002) 296:17–23. [CrossRef] [PubMed]
  • Beasley D.W.C., Davis C.T., Guzman H., Vanlandingham D.L., Travassos da Rosa A.P.A., Parsons R.E., et al., Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States, Virology (2003) 309:190–195. [CrossRef] [PubMed]
  • Beasley D.W.C., Whiteman M.C., Zhang S., Huang C.Y.-H., Schneider B.S., Smith D.R., et al., Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains, J. Virol. (2005) 79:8339–8347. [CrossRef] [PubMed]
  • Bernard K.A., Kramer L.D., West Nile virus activity in the United States, 2001, Viral Immunol. (2001) 14:319–338. [CrossRef] [PubMed]
  • Bernard K.A., Maffei J.G., Jones S.A., Kauffman E.B., Ebel G., Dupuis A.P., et al., West Nile virus infection in birds and mosquitoes, New York State, 2000, Emerg. Infect. Dis. (2001) 7:679–685. [CrossRef] [PubMed]
  • Bernkopf H., Levine S., Nerson R., Isolation of West Nile virus in Israel, J. Infect. Dis. (1953) 93:207–218. [CrossRef] [PubMed]
  • Berthet F.X., Zeller H.G., Drouet M.T., Rauzier J., Digoutte J.P., Deubel V., Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses, J. Gen. Virol. (1997) 78:2293–2297. [PubMed]
  • Bin H., Grossman Z., Pokamunski S., Malkinson M., Weiss L., Duvdevani P., et al., West Nile fever in Israel 1999–2000: from geese to humans, Ann. NY Acad. Sci. (2001) 951:127–142. [CrossRef]
  • Blitvich B.J., Fernandez-Salas I., Contreras-Cordero J.F., Marlenee N.L., Gonzalez-Rojas J.I., Komar N., et al., Serologic evidence of West Nile virus infection in horses, Coahuila State, Mexico, Emerg. Infect. Dis. (2003) 9:853–856. [PubMed]
  • Bondre V.P., Jadi R.S., Mishra A.C., Yergolkar P.N., Arankalle V.A., West Nile virus isolates from India: evidence for a distinct genetic lineage, J. Gen. Virol. (2007) 88:875–884. [CrossRef] [PubMed]
  • Bosch I., Herrera F., Navarro J.-C., Lentino M., Dupuis A., Maffei J., et al., West Nile virus, Venezuela, Emerg. Infect. Dis. (2007) 13:651–653. [CrossRef] [PubMed]
  • Botha E.M., Markotter W., Wolfaardt M., Paweska J.T., Swanepoel R., Palacios G., et al., Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains, Emerg. Infect. Dis. (2008) 14:222–230. [CrossRef] [PubMed]
  • Brault A., Huang C., Langevin S., Kinney R., Bowen R., Ramey W., et al., A single positively selected West Nile viral mutation confers increased virogenesis in American crows, Nat. Genet. (2007) 39:1162–1166. [CrossRef] [PubMed]
  • Brault A.C., Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility, Vet. Res. (2009) 40:1–19. [CrossRef] [EDP Sciences] [PubMed]
  • Briese T., Jia X.Y., Huang C., Grady L.J., Lipkin W.I., Identification of a Kunjin/West Nile-like flavivirus in brains of patients with New York encephalitis, Lancet (1999) 354:1261–1262. [CrossRef] [PubMed]
  • Brinton M., The molecular biology of West Nile virus: a new invader of the Western Hemisphere, Annu. Rev. Microbiol. (2002) 56:371–402. [CrossRef] [PubMed]
  • Calisher C.H., Gould E.A., Taxonomy of the virus family Flaviviridae, Adv. Virus Res. (2003) 59:1–19. [CrossRef] [PubMed]
  • Campbell G.L., Ceianu C.S., Savage H.M., Epidemic West Nile encephalitis in Romania: waiting for history to repeat itself, Ann. NY Acad. Sci. (2001) 951:94–101. [CrossRef]
  • CDC, Outbreak of West Nile-like viral encephalitis – New York, 1999, MMWR Morb. Mortal. Wkly Rep. (1999) 48:845–849. [PubMed]
  • CDC, Update: surveillance for West Nile virus in overwintering mosquitoes – New York, 2000, MMWR Morb. Mortal. Wkly Rep. (2000) 49:178–179. [PubMed]
  • CDC, Possible West Nile virus transmission to an infant Through breast-feeding – Michigan, 2000, MMWR Morb. Mortal. Wkly Rep. (2002) 51:877–878. [PubMed]
  • CDC, Intrauterine West Nile virus infection – New York, 2002, MMWR Morb. Mortal. Wkly Rep. (2002) 51:1135–1136. [PubMed]
  • Chambers T.J., Halevy M., Nestorowicz A., Rice C.M., Lustig S., West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness, J. Gen. Virol. (1998) 79:2375–2380. [PubMed]
  • Chambers T.J., Nickells M., Neuroadapted yellow fever virus 17D: genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone, J. Virol. (2001) 75:10912–10922. [CrossRef] [PubMed]
  • Chambers T.J., Diamond M.S., Pathogenesis of flavivirus encephalitis, Adv. Virus Res. (2003) 60:273–342. [CrossRef] [PubMed]
  • Charatan F., Organ transplants and blood transfusions may transmit West Nile virus, BMJ (2002) 325:566.
  • Charrel R.N., Brault A.C., Gallian P., Lemasson J.-J., Murgue B., Murri S., et al., Evolutionary relationship between Old World West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe, Virology (2003) 315:381–388. [CrossRef] [PubMed]
  • Chaturvedi U.C., Dhawan R., Khanna M., Mathur A., Breakdown of the blood-brain barrier during dengue virus infection of mice, J. Gen. Virol. (1991) 72:859–866. [CrossRef] [PubMed]
  • Chowers M.Y., Lang R., Nassar F., Ben-David D., Giladi M., Rubinshtein E., et al., Clinical characteristics of the West Nile fever outbreak, Israel, 2000, Emerg. Infect. Dis. (2001) 7:675–678. [CrossRef] [PubMed]
  • Cruz L., Cardenas V.M., Abarca M., Rodriguez T., Reyna R.F., Serpas M.V., et al., Short report: serological evidence of West Nile virus activity in El Salvador, Am. J. Trop. Med. Hyg. (2005) 72:612–615. [PubMed]
  • Davis C., Beasley D., Guzman H., Siirin M., Parsons R., Tesh R., Barrett A., Emergence of attenuated West Nile virus variants in Texas, 2003, Virology (2004) 330:342–350. [CrossRef] [PubMed]
  • Davis C., Ebel G., Lanciotti R., Brault A., Guzman H., Siirin M., et al., Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: evidence for the emergence of a dominant genotype, Virology (2005) 342:252–265. [CrossRef] [PubMed]
  • Davis L.E., DeBiasi R., Goade D.E., Haaland K.Y., Harrington J.A., Harnar J.B., et al., West Nile virus neuroinvasive disease, Ann. Neurol. (2006) 60:286–300. [CrossRef] [PubMed]
  • Desprès P., Frenkiel M.P., Ceccaldi P.E., Duarte Dos Santos C., Deubel V., Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses, J. Virol. (1998) 72:823–829. [PubMed]
  • Diamond M., Madhani H., Virus and host determinants of West Nile virus pathogenesis, PLoS Pathog. (2009) 5:e1000452.
  • Diaz A., Komar N., Visintin A., West Nile virus in birds, Argentina, Emerg. Infect. Dis. (2008) 14:689–691. [CrossRef] [PubMed]
  • Drebot M.A., Lindsay R., Barker I.K., Buck P.A., Fearon M., Hunter F., et al., West Nile virus surveillance and diagnostics: a Canadian perspective, J. Can. Infect. Dis. (2003) 14:105–114.
  • Dupuis A.P., Marra P.P., Kramer L.D., Serologic evidence of West Nile virus transmission, Jamaica, West Indies, Emerg. Infect. Dis. (2003) 9:860–863.
  • Ebel G.D., Carricaburu J., Young D., Bernard K., Kramer L.D., Genetic and phenotypic variation of West Nile virus in New York, 2000–2003, Am. J. Trop. Med. Hyg. (2004) 71:493–500. [PubMed]
  • Fagbami A., Human arthropod-borne virus infections in Nigeria. Serological and virological investigations and Shaki, Oyo State, J. Hyg. Epidemiol. Microbiol. Immunol. (1978) 22:184–189. [PubMed]
  • Fredericksen B.L., Smith M., Katze M.G., Shi P.-Y., Gale M., The host response to West Nile virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway, J. Virol. (2004) 78:7737–7747. [CrossRef] [PubMed]
  • German A., Myint K., Mai N., Pomeroy I., Phu N., Tzartos J., et al., A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model, Trans. R. Soc. Trop. Med. Hyg. (2006) 100:1135–1145. [CrossRef] [PubMed]
  • Giladi M., Metzkor-Cotter E., Martin D.A., Siegman-Igra Y., Korczyn A.D., Rosso R., et al., West Nile encephalitis in Israel, 1999: the New York connection, Emerg. Infect. Dis. (2001) 7:659–661. [CrossRef] [PubMed]
  • Granwehr B., Lillibridge K., Higgs S., Mason P., Aronson J., Campbell G., Barrett A., West Nile virus: where are we now?, Lancet Infect. Dis. (2004) 4:547–556. [CrossRef] [PubMed]
  • Gubler D.J., Emerging infections: the continuing spread of West Nile virus in the Western Hemisphere, Clin. Infect. Dis. (2007) 45:1039–1046. [CrossRef] [PubMed]
  • Guo J.-T., Hayashi J., Seeger C., West Nile virus inhibits the signal transduction pathway of alpha interferon, J. Virol. (2005) 79:1343–1350. [CrossRef] [PubMed]
  • Hall R.A., Scherret J.H., Mackenzie J.S., Kunjin virus: an Australian variant of West Nile?, Ann. NY Acad. Sci. (2001) 951:153–160. [CrossRef]
  • Hayes E.B., Gubler D., West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States, Annu. Rev. Med. (2006) 57:181–194. [CrossRef] [PubMed]
  • Hayes E.B., Komar N., Nasci R.S., Montgomery S.P., O’Leary D.R., Campbell G.L., Epidemiology and transmission dynamics of West Nile virus disease, Emerg. Infect. Dis. (2005) 11:1167–1173. [CrossRef] [PubMed]
  • Hayes E.B., Sejvar J.J., Zaki S.R., Lanciotti R.S., Bode A.V., Campbell G.L., Virology, pathology, and clinical manifestations of West Nile virus disease, Emerg. Infect. Dis. (2005) 11:1174–1179. [PubMed]
  • Higgs S., Schneider B.S., Vanlandingham D.L., Klingler K.A., Gould E.A., Nonviremic transmission of West Nile virus, Proc. Natl. Acad. Sci. USA (2005) 102:8871–8874. [CrossRef]
  • Hubálek Z., Halouzka J., West Nile fever – a reemerging mosquito-borne viral disease in Europe, Emerg. Infect. Dis. (1999) 5:643–650. [CrossRef] [PubMed]
  • Hubálek Z., Mosquito-borne viruses in Europe, Parasitol. Res. (2008) 103:Suppl. 1: S29–S43. [CrossRef] [PubMed]
  • Hunsperger E., Roehrig J., Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice, J. Neurovirol. (2006) 12:129–139. [CrossRef] [PubMed]
  • Hurlbut H., West Nile virus infection in arthropods, Am. J. Trop. Med. Hyg. (1956) 5:76–85. [PubMed]
  • Hutcheson H.J., Gorham C.H., Machain-Williams C., Loroño-Pino M.A., James A.M., Marlenee N.L., et al., Experimental transmission of West Nile virus (Flaviviridae: Flavivirus) by Carios capensis ticks from North America, Vector Borne Zoonotic Dis. (2005) 5:293–295. [CrossRef] [PubMed]
  • Ilkal M.A., Mavale M.S., Prasanna Y., Jacob P.G., Geevarghese G., Banerjee K., Experimental studies on the vector potential of certain Culex species to West Nile virus, Indian J. Med. Res. (1997) 106:225–228. [PubMed]
  • Jia X.Y., Briese T., Jordan I., Rambaut A., Chi H.C., MacKenzie J.S., et al., Genetic analysis of West Nile New York 1999 encephalitis virus, Lancet (1999) 354:1971–1972. [CrossRef] [PubMed]
  • Jones M., Davidson A., Hibbert L., Gruenwald P., Schlaak J., Ball S., et al., Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression, J. Virol. (2005) 79:5414–5420. [CrossRef] [PubMed]
  • Joubert L., Oudar J., Hannoun C., Beytout D., Corniou B., Guillon G.C., Panthier R., Epidemiology of the West Nile virus: study of a focus in Camargue. IV. Meningo-encephalomyelitis of the horse, Ann. Inst. Pasteur (Paris) (1970) 118:239–247. [PubMed]
  • Jupp P.G., The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans, Ann. NY Acad. Sci. (2001) 951:143–152. [CrossRef]
  • Kajaste-Rudnitski A., Mashimo T., Frenkiel M.-P., Guénet J.-L., Lucas M., Desprès P., The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells, J. Biol. Chem. (2006) 281:4624–4637. [CrossRef] [PubMed]
  • Kanamitsu M., Taniguchi K., Urasawa S., Ogata T., Wada Y., Wada Y., Saroso J.S., Geographic distribution of arbovirus antibodies in indigenous human populations in the Indo-Australian Archipelago, Am. J. Trop. Med. Hyg. (1979) 28:351–363. [PubMed]
  • Kilpatrick A.M., Meola M.A., Moudy R.M., Kramer L.D., Buchmeier M.J., Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes, PLoS Pathog. (2008) 4:e1000092.
  • King N.J.C., Getts D.R., Getts M.T., Rana S., Shrestha B., Kesson A.M., Immunopathology of flavivirus infections, Immunol. Cell Biol. (2007) 85:33–42. [CrossRef] [PubMed]
  • Klee A.L., Maidin B., Edwin B., Poshni I., Mostashari F., Fine A., et al., Long-term prognosis for clinical West Nile virus infection, Emerg. Infect. Dis. (2004) 10:1405–1411. [PubMed]
  • Klein R.S., Lin E., Zhang B., Luster A.D., Tollett J., Samuel M.A., et al., Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis, J. Virol. (2005) 79:11457–11466. [CrossRef] [PubMed]
  • Klenk K., Snow J., Morgan K., Bowen R., Stephens M., Foster F., et al., Alligators as West Nile virus amplifiers, Emerg. Infect. Dis. (2004) 10:2150–2155. [PubMed]
  • Koh W.-L., Ng M.-L., Molecular mechanisms of West Nile virus pathogenesis in brain cell, Emerg. Infect. Dis. (2005) 11:629–632. [PubMed]
  • Komar N., Langevin S., Hinten S., Nemeth N., Edwards E., Hettler D., et al., Experimental infection of North American birds with the New York 1999 strain of West Nile virus, Emerg. Infect. Dis. (2003) 9:311–322. [PubMed]
  • Komar N., Clark G.G., West Nile virus activity in Latin America and the Carribean, Rev. Panam. Salud Publica (2006) 19:112–117. [PubMed]
  • Kong K., Delroux K., Wang X., Qian F., Arjona A., Malawista S., et al., Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly, J. Virol. (2008) 82:7613–7623. [CrossRef] [PubMed]
  • Krisztalovics K., Ferenczi E., Molnar Z., Csohan A., Ban E., Zoldi V., Kaszas K., West Nile virus infections in Hungary, August–September 2008, Euro Surveill. (2008) 13:pii: 19030.
  • Kulasekera V.L., Kramer L., Nasci R.S., Mostashari F., Cherry B., Trock S.C., et al., West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000, Emerg. Infect. Dis. (2001) 7:722–725. [CrossRef] [PubMed]
  • Kumar D., Prasad G., Zaltzman J., Levy G., Humar A., Community-aquired West Nile virus infection in solid-organ transplant recipients, Transplantation (2004) 77:399–402. [CrossRef] [PubMed]
  • Lanciotti R.S., Roehrig J.T., Deubel V., Smith J., Parker M., Steele K., et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the Northeastern United States, Science (1999) 286:2333–2337. [CrossRef] [PubMed]
  • Le Guenno B., West Nile: a deadly virus?, Lancet (1996) 348:1315. [PubMed]
  • Lefrançois T., Blitvich B.J., Pradel J., Molia S., Vachiéry N., Pallavicini G., et al., West Nile virus surveillance, Guadeloupe, 2003–2004, Emerg. Infect. Dis. (2005) 11:1100–1103. [PubMed]
  • Li J., Loeb J.A., Shy M.E., Shah A.K., Tselis A.C., Kupski W.J., Lewis R.A., Asymmetric flaccid paralysis: a neuromuscular presentation of West Nile virus infection, Ann. Neurol. (2003) 53:703–710. [CrossRef] [PubMed]
  • Liao C.L., Lin Y.L., Shen S.C., Shen J.Y., Su H.L., Huang Y.L., et al., Antiapoptotic but not antiviral function of human bcl-2 assists establishment of Japanese encephalitis virus persistence in cultured cells, J. Virol. (1998) 72:9844–9854. [PubMed]
  • Licon Luna R.M., Lee E., Müllbacher A., Blanden R.V., Langman R., Lobigs M., Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice, J. Virol. (2002) 76:3202–3211. [CrossRef] [PubMed]
  • Lim J., Lisco A., McDermott D., Huynh L., Ward J., Johnson B., et al., Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man, PLoS Pathog. (2009) 5:e1000321.
  • Lin R.-J., Liao C.-L., Lin E., Lin Y.-L., Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection, J. Virol. (2004) 78:9285–9294. [CrossRef] [PubMed]
  • Lin R.-J., Chang B.-L., Yu H.-P., Liao C.-L., Lin Y.-L., Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism, J. Virol. (2006) 80:5908–5918. [CrossRef] [PubMed]
  • Lindenbach B., Thiel H.J., Rice C.M., Flaviviridae: The viruses ad their replication, in: Knipe D.M., Howley P.M. (Eds.), Fields virology, Lippincott Williams & Wilkins, Philadelphia, 2007, pp. 1101–1152.
  • Liou M.L., Hsu C.Y., Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain, Cell Tissue Res. (1998) 293:389–394. [CrossRef] [PubMed]
  • Liu W.J., Chen H.B., Wang X.J., Huang H., KhromykhA., Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription, J. Virol. (2004) 78:12225–12235. [CrossRef] [PubMed]
  • Liu W.J., Wang X.J., Mokhonov V.V., Shi P.-Y., Randall R., Khromykh A.A., Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins, J. Virol. (2005) 79:1934–1942. [CrossRef] [PubMed]
  • Liu W.J., Wang X.J., Clark D., Lobigs M., Hall R., Khromykh A., A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice, J. Virol. (2006) 80:2396–2404. [CrossRef] [PubMed]
  • Lucas M., Mashimo T., Frenkiel M.-P., Simon-Chazottes D., Montagutelli X., Ceccaldi P.-E., et al., Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2′–5′ oligoadenylate synthetase 1b protein, Immunol. Cell Biol. (2003) 81:230–236. [CrossRef] [PubMed]
  • Lvov D.K., Butenko A.M., Gromashevsky V.L., Larichev V.P., Gaidamovich S.Y., Vyshemirsky O.I., et al., Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999, Emerg. Infect. Dis. (2000) 6:373–376. [CrossRef] [PubMed]
  • Macdonald J., Tonry J., Hall R.A., Williams B., Palacios G., Ashok M.S., et al., NS1 protein secretion during the acute phase of West Nile virus infection, J. Virol. (2005) 79:13924–13933. [CrossRef] [PubMed]
  • Mackenzie J.S., Barrett A.D., Deubel V., The Japanese encephalitis serological group of flaviviruses: a brief introduction to the group, Curr. Top. Microbiol. Immunol. (2002) 267:1–10. [PubMed]
  • Marfin A.A., Bleed D.M., Lofgren J.P., Olin A.C., Savage H.M., Smith G.C., et al., Epidemiologic aspects of a St. Louis encephalitis epidemic in Jefferson County Arkansas, 1991, Am. J. Trop. Med. Hyg. (1993) 49:30–37. [PubMed]
  • Mashimo T., Lucas M., Simon-Chazottes D., Frenkiel M., Montagutelli X., Ceccaldi P., et al., A nonsense mutation in the gene encoding 2′–5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proc. Natl. Acad. Sci. USA (2002) 99:11311–11316. [CrossRef]
  • Matthews V., Robertson T., Kendrick T., Abdo M., Papadimitriou J., McMinn P., Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice, Int. J. Exp. Pathol. (2000) 81:31–40. [CrossRef] [PubMed]
  • McIntosh B., Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) univittatus Theobald as vector, S. Afr. J. Sci. (1976) 72:295–300.
  • McMinn P.C., Dalgarno L., Weir R.C., A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation, Virology (1996) 220:414–423. [CrossRef] [PubMed]
  • McMinn P.C., The molecular basis of virulence of the encephalitogenic flaviviruses, J. Gen. Virol. (1997) 78:2711–2722. [PubMed]
  • Melian E., Hinzman E., Nagasaki T., Firth A., Wills N., Nouwens A., et al., NS1’ of flaviviruses in the Japanese encephalitis serogroup is a product of ribosomal frameshifting and plays a role in viral neuro-invasiveness, J. Virol. (2009) 84:1641–1647. [CrossRef] [PubMed]
  • Mertens E., Kajaste-Rudnitski A., Torres S., Funk A., Frenkiel M.-P., Iteman I., et al., Viral determinants in the NS3 helicase and 2K peptide that promote West Nile virus resistance to antiviral action of 2′,5′-oligoadenylate synthetase 1b, Virology (2010) 399:1–10. [CrossRef] [PubMed]
  • Miller B.R., Nasci R.S., Godsey M.S., Savage H.M., Lutwama J.J., Lanciotti R.S., Peters C.J., First field evidence for natural vertical transmission of West Nile virus in Culex univittatus complex mosquitoes from Rift Valley province, Kenya, Am. J. Trop. Med. Hyg. (2000) 62:240–246.
  • Miller D.L., Mauel M.J., Baldwin C., Burtle G., Ingram D., Hines M.E., Frazier K.S., West Nile virus in farmed alligators, Emerg. Infect. Dis. (2003) 9:794–799. [PubMed]
  • Monath T., Cropp C., Harrison A., Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy, Lab. Invest. (1983) 48:399–410. [PubMed]
  • Morales M.A., Barrandeguy M., Fabbri C., Garcia J.B., Vissani A., Trono K., et al., West Nile virus isolation from equines in Argentina, 2006, Emerg. Infect. Dis. (2006) 12:1559–1561. [PubMed]
  • Mostashari F., Bunning M., Kitsutani P., Singer D., Nash D., Cooper M., et al., Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey, Lancet (2001) 358:261–264. [CrossRef] [PubMed]
  • Moudy R., Meola M., Morin L.L., Ebel G.D., Kramer L.D., A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes, Am. J. Trop. Med. Hyg. (2007) 77:365–370. [PubMed]
  • Müllbacher A., Lobigs M., Lee E., Immunobiology of mosquito-borne encephalitic flaviviruses, Adv. Virus Res. (2003) 60:87–120. [CrossRef] [PubMed]
  • Munoz-Jordan J., Sanchez-Burgos G., Laurent-Rolle M., Garcia-Sastre A., Inhibition of interferon signaling by dengue virus, Proc. Natl. Acad. Sci. USA (2003) 100:14333–14338. [CrossRef]
  • Muñoz-Jordán J.L., Laurent-Rolle M., Ashour J., Martínez-Sobrido L., Ashok M., Lipkin W.I., García-Sastre A., Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses, J. Virol. (2005) 79:8004–8013. [CrossRef] [PubMed]
  • Murgue B., Murri S., Triki H., Deubel V., Zeller H.G., West Nile in the Mediterranean Basin: 1950–2000, Ann. NY Acad. Sci. (2001) 951:117–126. [CrossRef]
  • Murray K.O., Baraniuk S., Resnick M., Arafat R., Kilborn C., Cain K., et al., Risk factors for encephalitis and death from West Nile virus infection, Epidemiol. Infect. (2006) 134:1325–1332. [CrossRef] [PubMed]
  • Murray K.O., Resnick M., Miller V., Depression after infection with West Nile virus, Emerg. Infect. Dis. (2007) 13:479–481. [CrossRef] [PubMed]
  • Murray K.O., Baraniuk S., Resnick M., Arafat R., Kilborn C., Shallenberger R., et al., Clinical investigation of hospitalized human cases of West Nile virus infection in Houston, Texas, 2002–2004, Vector Borne Zoonotic Dis. (2008) 8:167–174. [CrossRef] [PubMed]
  • Murray K.O., Koers E., Baraniuk S., Herrington E., Carter H., Sierra M., et al., Risk factors for encephalitis from West Nile virus: a matched case-control study using hospitalized controls, Zoonoses Public Health (2009) 56:370–375. [CrossRef] [PubMed]
  • Murray K.O, Walker C., Herrington E., Lewis J.A., McCormick J., Beasley D.W.C., et al., Persistent infection with West Nile virus years after initial infection, J. Infect. Dis. (2010) 201:2–4. [CrossRef] [PubMed]
  • Nasci R.S., Savage H.M., White D.J., Miller J.R., Cropp B.C., Godsey M.S., et al., West Nile virus in overwintering Culex mosquitoes, New York City, 2000, Emerg. Infect. Dis. (2001) 7:742–744. [CrossRef] [PubMed]
  • Nasci R.S., White D.J., Stirling H., Oliver J.A., Daniels T.J., Falco R.C., et al., West Nile virus isolates from mosquitoes in New York and New Jersey, 1999, Emerg. Infect. Dis. (2001) 7:626–630. [CrossRef] [PubMed]
  • Nash D., Mostashari F., Fine A., Miller J., O’Leary D., Murray K., et al., The outbreak of West Nile virus infection in the New York City area in 1999, N. Engl. J. Med. (2001) 344:1807–1814. [CrossRef] [PubMed]
  • Nunes Duarte Dos Santos C., Determinants in the envelope E protein and viral RNA helicase NS3 that influence the induction of apoptosis in response to infection with dengue type 1 virus, Virology (2000) 274:292–308. [CrossRef] [PubMed]
  • Oesterle P., Nemeth N., Young G., Mooers N., Elmore S., Bowen R., et al., Cliff swallows, swallow bugs, and West Nile virus: an unlikely transmission mechanism, Vector Borne Zoonotic Dis. (2010) 10:507–513. [CrossRef] [PubMed]
  • Panthier R., Hannoun C., Beytout D., Mouchet J., Epidemiology of West Nile virus. Study of a center in Camargue. 3.-Human diseases, Ann. Inst. Pasteur (Paris) (1968) 115:435–445. [PubMed]
  • Parquet M.C., Kumatori A., Hasebe F., Morita K., Igarashi A., West Nile virus-induced bax-dependent apoptosis, FEBS Lett. (2001) 500:17–24. [CrossRef] [PubMed]
  • Perelygin A., Scherbik S.V., Zhulin I.B., Stockman B.M., Li Y., Brinton M.A., Positional cloning of the murine flavivirus resistance gene, Proc. Natl. Acad. Sci. USA (2002) 99:9322–9327. [CrossRef]
  • Petersen L.R., Roehrig J.T., West Nile virus: a reemerging global pathogen, Emerg. Infect. Dis. (2001) 7:611–614. [CrossRef] [PubMed]
  • Petersen L.R., Hayes E.B., West Nile virus in the Americas, Med. Clin. North Am. (2008) 92:1307–1322. [CrossRef] [PubMed]
  • Platonov A.E., Shipulin G.A., Shipulina O.Y., Tyutyunnik E.N., Frolochkina T.I., Lanciotti R.S., et al., Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999, Emerg. Infect. Dis. (2001) 7:128–132. [CrossRef] [PubMed]
  • Platt K., Tucker B., Halbur P., Blitvich B., Fabiosa F., Mullin K., et al., Fox squirrels (Sciurus niger) develop West Nile virus viremias sufficient for infecting select mosquito species, Vector Borne Zoonotic Dis. (2008) 8:225–234. [CrossRef] [PubMed]
  • Poidinger M., Hall R.A., MacKenzie J.S., Molecular characterization of the Japanese encephalitis serocomplex of the flavivirus genus, Virology (1996) 218:417–421. [CrossRef] [PubMed]
  • Pupo M., Guzmán M.G., Fernández R., Llop A., Dickinson F.O., Pérez D., et al., West Nile virus infection in humans and horses, Cuba, Emerg. Infect. Dis. (2006) 12:1022–1024.
  • Rappole J.H., Derrickson S.R., Hubálek Z., Migratory birds and spread of West Nile virus in the Western Hemisphere, Emerg. Infect. Dis. (2000) 6:319–328. [CrossRef] [PubMed]
  • Rappole J.H., Hubálek Z., Migratory birds and West Nile virus, J. Appl. Microbiol. (2003) 94 Suppl:47S–58S. [CrossRef] [PubMed]
  • Reisen W., Fang Y., Lothrop H., Martinez V., Wilson J., Oconnor P., et al., Overwintering of West Nile virus in Southern California, J. Med. Entomol. (2006) 43:344–355. [CrossRef] [PubMed]
  • Rios J.J., Fleming J.G.W., Bryant U.K., Carter C.N., Huber J.C., Long M.T., et al., OAS1 polymorphisms are associated with susceptibility to West Nile encephalitis in horses, PLoS ONE (2010) 5:e10537.
  • Sampson B.A., Armbrustmacher V., West Nile encephalitis: the neuropathology of four fatalities, Ann. NY Acad. Sci. (2001) 951:172–178. [CrossRef]
  • Samuel C.E., Host genetic variability and West Nile virus susceptibility, Proc. Natl. Acad. Sci. USA (2002) 99:11555–11557. [CrossRef]
  • Samuel M., Diamond M.S., Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion, J. Virol. (2006) 80:9349–9360. [CrossRef] [PubMed]
  • Schneider B., Higgs S., The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response, Trans. R. Soc. Trop. Med. Hyg. (2008) 102:400–408. [CrossRef] [PubMed]
  • Schneider B.S., Soong L., Girard Y.A., Campbell G., Mason P., Higgs S., Potentiation of West Nile encephalitis by mosquito feeding, Viral Immunol. (2006) 19:74–82. [CrossRef] [PubMed]
  • Sejvar J.J., Leis A.A., Stokic D.S., Van Gerpen J.A., Marfin A.A., Webb R., et al., Acute flaccid paralysis and West Nile virus infection, Emerg. Infect. Dis. (2003) 9:788–793. [PubMed]
  • Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I., Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus, J. Gen. Virol. (2004) 85:3637–3645. [CrossRef] [PubMed]
  • Shrestha B., Gottlieb D., Diamond M.S., Infection and injury of neurons by West Nile encephalitis virus, J. Virol. (2003) 77:13203–13213. [CrossRef] [PubMed]
  • Shrestha B., Zhang B., Purtha W., Klein R., Diamond M., Tumor necrosis Factor Alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system, J. Virol. (2008) 82:8956–8964. [CrossRef] [PubMed]
  • Siegel-Itzkovich J., Twelve die of West Nile virus in Israel, BMJ (2000) 321:724.
  • Silverman R.H., Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response, J. Virol. (2007) 81:12720–12729. [CrossRef] [PubMed]
  • Smithburn K.C., Hughs T.P., Burke A.W., Paul J.H., A neurotropic virus isolated from the blood of a native of Uganda, Am. J. Trop. Med. Hyg. (1940) 20:471–492.
  • Snapinn K.W., Holmes E.C., Young D.S., Bernard K.A., Kramer L.D., Ebel G.D., Declining growth rate of West Nile virus in North America, J. Virol. (2006) 81:2531–2534. [CrossRef] [PubMed]
  • Suthar M., Gale Jr M., Owen D., Evasion and disruption of innate immune signalling by hepatitis C and West Nile viruses, Cell. Microbiol. (2009) 11:880–888. [CrossRef] [PubMed]
  • Tatsumi R., Sekiya S., Nakanishi R., Mizutani M., Kojima S.-I., Sokawa Y., Function of ubiquitin-like domain of chicken 2′–5′-oligoadenylate synthetase in conformational stability, J. Interferon Cytokine Res. (2003) 23:667–676. [CrossRef] [PubMed]
  • Taylor R., Work T., Hurlbut H., Risk F., A study of the ecology of West Nile virus in Egypt, Am. J. Trop. Med. Hyg. (1956) 5:579–620. [PubMed]
  • Tsai T.F., Popovici F., Cernescu C., Campbell G.L., Nedelcu N.I., West Nile encephalitis epidemic in southeastern Romania, Lancet (1998) 352:767–771. [CrossRef] [PubMed]
  • Turell M.J., O’Guinn M., Oliver J., Potential for New York mosquitoes to transmit West Nile virus, Am. J. Trop. Med. Hyg. (2000) 62:413–414. [PubMed]
  • Venter M., Myers T.G., Wilson M.A., Kindt T.J., Paweska J.T., Burt F.J., et al., Gene expression in mice infected with West Nile virus strains of different neurovirulence, Virology (2005) 342:119–140. [CrossRef] [PubMed]
  • Wacher C., Muller M., Hofer M.J., Getts D.R., Zabaras R., Ousman S.S., et al., Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses, J. Virol. (2006) 81:860–871. [CrossRef] [PubMed]
  • Wang J.J., Liao C.L., Chiou Y.W., Chiou C.T., Huang Y.L., Chen L.K., Ultrastructure and localization of E proteins in cultured neuron cells infected with Japanese encephalitis virus, Virology (1997) 238:30–39. [CrossRef] [PubMed]
  • Wicker J., Whiteman M., Beasley D., Davis C., Zhang S., Schneider B., et al., A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice, Virology (2006) 349:245–253. [CrossRef] [PubMed]
  • Wilson J.R., de Sessions P.F., Leon M.A., Scholle F., West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction, J. Virol. (2008) 82:262–8271.
  • Wojnarowicz C., Olkowski A., Schwean-Lardner K., First Canadian outbreak of West Nile virus disease in farmed domestic ducks in Saskatchewan, Can. Vet. J. (2007) 48:1270–1271. [PubMed]
  • Work T., Hurlbut H., Taylor R., Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs, Am. J. Trop. Med. Hyg. (1955) 4:872–888. [PubMed]
  • Xiao S.Y., Guzman H., Zhang H., Travassos da Rosa A.P., Tesh R.B., West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis, Emerg. Infect. Dis. (2001) 7:714–721. [CrossRef] [PubMed]
  • Zeller H.G., Schuffenecker I., West Nile virus: an overview of its spread in Europe and the Mediterranean Basin in contrast to its spread in the Americas, Eur. J. Clin. Microbiol. Infect. Dis. (2004) 23:147–156. [CrossRef] [PubMed]