Free access
Review
Issue
Vet. Res.
Volume 41, Number 6, November–December 2010
Emerging and re-emerging animal viruses
Number of page(s) 14
DOI http://dx.doi.org/10.1051/vetres/2010010
Published online 05 February 2010
How to cite this article Vet. Res. (2010) 41:38
  • Antia R., Regoes R.R., Koella J.C., Bergstrom C.T., The role of evolution in the emergence of infectious diseases, Nature (2003) 426:658–661. [CrossRef] [PubMed]
  • Baranowski E., Ruiz-Jarabo C.M., Domingo E., Evolution of cell recognition by viruses, Science (2001) 292:1102–1105. [CrossRef] [PubMed]
  • Baranowski E., Ruiz-Jarabo C.M., Pariente N., Verdaguer N., Domingo E., Evolution of cell recognition by viruses: a source of biological novelty with medical implications, Adv. Virus Res. (2003) 62:19–111. [CrossRef] [PubMed]
  • Batschelet E., Domingo E., Weissmann C., The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate, Gene (1976) 1:27–32. [CrossRef] [PubMed]
  • Bloomfield V.A., Crothers D.M., Tinoco J., Nucleic acids. Structures, properties, and functions, Section I, University Science Books, Sausalito, CA, 2000.
  • Bowen D.G., Walker C.M., The origin of quasispecies: cause or consequence of chronic hepatitis C viral infection?, J. Hepatol. (2005) 42:408–417. [CrossRef] [PubMed]
  • Bushman F., Lateral DNA transfer, mechanisms and consequences, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2002.
  • Ciurea A., Hunziker L., Martinic M.M., Oxenius A., Hengartner H., Zinkernagel R.M., CD4+ T-cell-epitope escape mutant virus selected in vivo, Nat. Med. (2001) 7:795–800. [CrossRef] [PubMed]
  • Chetverin A.B., Kopein D.S., Chetverina H.V., Demidenko A.A., Ugarov V.I., Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules, J. Biol. Chem. (2005) 280:8748–8755. [CrossRef] [PubMed]
  • Domingo E., Díez J., Martínez M.A., Hernández J., Holguín A., Borrego B., Mateu M.G., New observations on antigenic diversification of RNA viruses. Antigenic variation is not dependent on immune selection, J. Gen. Virol. (1993) 74:2039–2045. [CrossRef] [PubMed]
  • Domingo E., Holland J.J., RNA virus mutations and fitness for survival, Annu. Rev. Microbiol. (1997) 51:151–178. [CrossRef] [PubMed]
  • Domingo E., Biebricher C., Eigen M., Holland J.J., Quasispecies and RNA virus evolution: principles and consequences, Landes Bioscience, Austin, 2001.
  • Domingo E., Quasispecies: concepts and implications for virology, Springer Verlag, 2006. [CrossRef]
  • Domingo E., Virus evolution, in: Fields Virology, 5th ed., Lappincott Williams & Wilkins, Philadelphia, 2007.
  • Domingo E., Gomez J., Quasispecies and its impact on viral hepatitis, Virus Res. (2007) 127:131–150. [CrossRef] [PubMed]
  • Domingo E., Parrish C., Holland J.J.E., Origin and evolution of viruses, 2nd ed., Elsevier, Oxford, 2008.
  • Drake J.W., Holland J.J., Mutation rates among RNA viruses, Proc. Natl. Acad. Sci. USA (1999) 96:13910–13913. [CrossRef]
  • Eckerle L.D., Lu X., Sperry S.M., Choi L., Denison M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants, J. Virol. (2007) 81:12135–12144. [CrossRef] [PubMed]
  • Eigen M., Biebricher C.K., Sequence space and quasispecies distribution, CRC Press, Boca Raton, FL, 1988.
  • Eriksson N., Pachter L., Mitsuya Y., Rhee S.Y., Wang C., Gharizadeh B., et al., Viral population estimation using pyrosequencing, PLoS Comput. Biol. (2008) 4:e1000074. [CrossRef] [PubMed]
  • Escarmís C., Dávila M., Domingo E., Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller’s ratchet, J. Mol. Biol. (1999) 285:495–505. [CrossRef] [PubMed]
  • Evans A.S., Kaslow R.A., Viral infections of humans. Epidemiology and control, Plenum Medical Book Company, New York and London, 1997.
  • Farci P., Shimoda A., Coiana A., Diaz G., Peddis G., Melpolder J.C., et al., The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies, Science (2000) 288:339–344. [CrossRef] [PubMed]
  • Ferrer-Orta C., Arias A., Escarmis C., Verdaguer N., A comparison of viral RNA-dependent RNA polymerases, Curr. Opin. Struct. Biol. (2006) 16:27–34. [CrossRef] [PubMed]
  • Figlerowicz M., Alejska M., Kurzynska-Kokorniak A., Figlerowicz M., Genetic variability: the key problem in the prevention and therapy of RNA-based virus infections, Med. Res. Rev. (2003) 23:488–518. [CrossRef] [PubMed]
  • Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., Ellenberger T., DNA repair and mutagenesis, American Society for Microbiology, Washington, DC, 2006.
  • Gavrilin G.V., Cherkasova E.A., Lipskaya G.Y., Kew O.M., Agol V.I., Evolution of circulating wild poliovirus and of vaccine-derived poliovirus in an immunodeficient patient: a unifying model, J. Virol. (2000) 74:7381–7390. [CrossRef] [PubMed]
  • Gibbs M.J., Armstrong J.S., Gibbs A.J., The haemagglutinin gene, but not the neuraminidase gene, of “Spanish flu” was a recombinant, Philos. Trans. R. Soc. Lond. B Biol. Sci. (2001) 356:1845–1855. [CrossRef] [PubMed]
  • Gmyl A.P., Korshenko S.A., Belousov E.V., Khitrina E.V., Agol V.I., Nonreplicative homologous RNA recombination: promiscuous joining of RNA pieces?, RNA (2003) 9:1221–1231. [CrossRef] [PubMed]
  • González-López C., Arias A., Pariente N., Gómez-Mariano G., Domingo E., Preextinction viral RNA can interfere with infectivity, J. Virol. (2004) 78:3319–3324. [CrossRef] [PubMed]
  • González-López C., Gómez-Mariano G., Escarmís C., Domingo E., Invariant aphthovirus consensus nucleotide sequence in the transition to error catastrophe, Infect. Genet. Evol. (2005) 5:366–374. [CrossRef] [PubMed]
  • Grande-Pérez A., Lazaro E., Lowenstein P., Domingo E., Manrubia S.C., Suppression of viral infectivity through lethal defection, Proc. Natl. Acad. Sci. USA (2005) 102:4448–4452. [CrossRef]
  • Haagmans B.L., Andeweg A.C., Osterhaus A.D., The application of genomics to emerging zoonotic viral diseases, PLoS Pathog. (2009) 5:e1000557. [CrossRef] [PubMed]
  • Haydon D.T., Woolhouse M.E., Immune avoidance strategies in RNA viruses: fitness continuums arising from trade-offs between immunogenicity and antigenic variability, J. Theor. Biol. (1998) 193:601–612. [CrossRef] [PubMed]
  • He C.Q., Xie Z.X., Han G.Z., Dong J.B., Wang D., Liu J.B., et al., Homologous recombination as an evolutionary force in the avian influenza A virus, Mol. Biol. Evol. (2009) 26:177–187. [PubMed]
  • Hueffer K., Parrish C.R., Parvovirus host range, cell tropism and evolution, Curr. Opin. Microbiol. (2003) 6:392–398. [CrossRef] [PubMed]
  • Ishihama A., Mizumoto K., Kawakami K., Kato A., Honda A., Proofreading function associated with the RNA-dependent RNA polymerase from influenza virus, J. Biol. Chem. (1986) 261:10417–10421. [PubMed]
  • Khetsuriani N., Prevots D.R., Quick L., Elder M.E., Pallansch M., Kew O., Sutter R.W., Persistence of vaccine-derived polioviruses among immunodeficient persons with vaccine-associated paralytic poliomyelitis, J. Infect. Dis. (2003) 188:1845–1852. [CrossRef] [PubMed]
  • Knowles N.J., Samuel A.R., Molecular epidemiology of foot-and-mouth disease virus, Virus Res. (2003) 91:65–80. [CrossRef] [PubMed]
  • Krauss H., Weber A., Appel M., Enders B., Isenberg H.D., Schiefer H.G., et al., Zoonoses. Infectious diseases transmissible from animals to humans, ASM Press, Washington, DC, 2003.
  • Lai M.M.C., Genetic recombination in RNA viruses, Curr. Top. Microbiol. Immunol. (1992) 176:21–32. [PubMed]
  • Lazaro E., Escarmis C., Perez-Mercader J., Manrubia S.C., Domingo E., Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss, Proc. Natl. Acad. Sci. USA (2003) 100:10830–10835. [CrossRef]
  • Lea S., Hernández J., Blakemore W., Brocchi E., Curry S., Domingo E., et al., The structure and antigenicity of a type C foot-and-mouth disease virus, Structure (1994) 2:123–139. [CrossRef] [PubMed]
  • Levy J.A., HIV and the pathogenesis of AIDS, ASM Press, Washington, DC, 2007.
  • Li W., Wong S.K., Li F., Kuhn J.H., Huang I.C., Choe H., Farzan M., Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions, J. Virol. (2006) 80:4211–4219. [CrossRef] [PubMed]
  • Luytjes W., Bredenbeek P.J., Noten A.F., Horzinek M.C., Spaan W.J., Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus, Virology (1988) 166:415–422. [CrossRef] [PubMed]
  • Mardis E.R., The impact of next-generation sequencing technology on genetics, Trends Genet. (2008) 24:133–141. [PubMed]
  • Martinez M.A., Hernandez J., Piccone M.E., Palma E.L., Domingo E., Knowles N., Mateu M.G., Two mechanisms of antigenic diversification of foot-and-mouth disease virus, Virology (1991) 184:695–706. [CrossRef] [PubMed]
  • Mascola J.R., The cat and mouse of HIV-1 antibody escape, PLoS Pathog. (2009) 5:e1000592. [CrossRef] [PubMed]
  • Maynard Smith J.M., Natural selection and the concept of a protein space, Nature (1970) 225:563–564. [CrossRef] [PubMed]
  • McFadden G., Poxvirus tropism, Nat. Rev. Microbiol. (2005) 3:201–213. [CrossRef] [PubMed]
  • Menéndez-Arias L., Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases, Prog. Nucleic Acid Res. Mol. Biol. (2002) 71:91–147. [CrossRef] [PubMed]
  • Mims C., Nash A., Stephen J., Mims’ pathogenesis of infectious disease, Academic Press, San Diego, 2001.
  • Minskaia E., Hertzig T., Gorbalenya A.E., Campanacci V., Cambillau C., Canard B., Ziebuhr J., Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis, Proc. Natl. Acad. Sci. USA (2006) 103:5108–5113. [CrossRef]
  • Morse S.S., The evolutionary biology of viruses, Raven Press, New York, 1994.
  • Nagy P.D., Carpenter C.D., Simon A.E., A novel 3′-end repair mechanism in an RNA virus, Proc. Natl. Acad. Sci. USA (1997) 94:1113–1118. [CrossRef]
  • Nagy P.D., Simon A.E., New insights into the mechanisms of RNA recombination, Virology (1997) 235:1–9. [CrossRef] [PubMed]
  • Nemerow G.R., Stewart P.L., Antibody neutralization epitopes and integrin binding sites on nonenveloped viruses, Virology (2001) 288:189–191. [CrossRef] [PubMed]
  • Nijhuis M., van Maarseveen N.M., Boucher C.A., Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases, Handb. Exp. Pharmacol. (2009) 189:299–320. [CrossRef] [PubMed]
  • Novella I.S., Duarte E.A., Elena S.F., Moya A., Domingo E., Holland J.J., Exponential increases of RNA virus fitness during large population transmissions, Proc. Natl. Acad. Sci. USA (1995) 92:5841–5844. [CrossRef]
  • Novella I.S., Contributions of vesicular stomatitis virus to the understanding of RNA virus evolution, Curr. Opin. Microbiol. (2003) 6:399–405. [CrossRef] [PubMed]
  • Nowak M.A., May R.M., Virus dynamics. Mathematical principles of immunology and virology, Oxford University Press Inc., New York, 2000.
  • Nowak M.A., Evolutionary dynamics, The Belknap Press of Harvard University Press, Cambridge, Massachusetts and London, England, 2006.
  • Nunez J.I., Molina N., Baranowski E., Domingo E., Clark S., Burman A., et al., Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host, J. Virol. (2007) 81:8497–8506. [CrossRef] [PubMed]
  • Odoom J.K., Yunus Z., Dunn G., Minor P.D., Martin J., Changes in population dynamics during long-term evolution of sabin type 1 poliovirus in an immunodeficient patient, J. Virol. (2008) 82:9179–9190. [CrossRef] [PubMed]
  • Palese P., Shaw M.L., Orthomyxoviridae: the viruses and their replication, in: Knipe D.M., Howley P.M. (Eds.), Fields Virology, 5th ed., Lappincott Williams & Wilkins, Philadelphia, 2007.
  • Parrish C.R., Kawaoka Y., The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses, Annu. Rev. Microbiol. (2005) 59:553–586. [CrossRef] [PubMed]
  • Paunio M., Peltola H., Valle M., Davidkin I., Virtanen M., Heinonen O.P., Explosive school-based measles outbreak: intense exposure may have resulted in high risk, even among revaccinees, Am. J. Epidemiol. (1998) 148:1103–1110. [PubMed]
  • Peters C.J., Emerging viral diseases, in: Knipe D.M., Howley P.M. (Eds.), Fields Virology, 5th ed., Lappincott Williams & Wilkins, Philadelphia, 2007, pp. 605–625.
  • Pfeiffer J.K., Kirkegaard K., Ribavirin resistance in hepatitis C virus replicon-containing cell lines conferred by changes in the cell line or mutations in the replicon RNA, J. Virol. (2005) 79:2346–2355. [CrossRef] [PubMed]
  • Quiñones-Mateu M.E., Arts E., Virus fitness: concept, quantification, and application to HIV population dynamics, Curr. Top. Microbiol. Immunol. (2006) 299:83–140. [CrossRef] [PubMed]
  • Rocha E., Cox N.J., Black R.A., Harmon M.W., Harrison C.J., Kendal A.P., Antigenic and genetic variation in influenza A (H1N1) virus isolates recovered from a persistently infected immunodeficient child, J. Virol. (1991) 65:2340–2350. [PubMed]
  • Sanz-Ramos M., Diaz-San Segundo F., Escarmis C., Domingo E., Sevilla N., Hidden virulence determinants in a viral quasispecies in vivo, J. Virol. (2008) 82:10465–10476. [CrossRef] [PubMed]
  • Schnitzler S.U., Schnitzler P., An update on swine-origin influenza virus A/H1N1: a review, Virus Genes (2009) 39:279–292. [CrossRef] [PubMed]
  • Simmonds P., Welch J., Frequency and dynamics of recombination within different species of human enteroviruses, J. Virol. (2006) 80:483–493. [CrossRef] [PubMed]
  • Small M., Tse C.K., Walker D.M., Super-spreaders and the rate of transmission of the SARS virus, Physica D (2006) 215:146–158. [CrossRef] [MathSciNet]
  • Smolinski M.S., Hamburg M.A., Lederberg J., Microbial threats to health. Emergence, detection and response, The National Academics Press, Washington, DC, 2003.
  • Solé R., Goodwin B., Signs of life, how complexity pervades biology, Basic Books, New York, 2000.
  • Steinhauer D.A., Domingo E., Holland J.J., Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase, Gene (1992) 122:281–288. [CrossRef] [PubMed]
  • Taboga O., Tami C., Carrillo E., Núñez J.I., Rodríguez A., Saíz J.C., et al., A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants, J. Virol. (1997) 71:2606–2614. [PubMed]
  • Tami C., Taboga O., Berinstein A., Nuñez J.I., Palma E.L., Domingo E., et al., Evidence of the coevolution of antigenicity and host cell tropism of foot-and-mouth disease virus in vivo, J. Virol. (2003) 77:1219–1226. [CrossRef] [PubMed]
  • Tsibris A.M., Korber B., Arnaout R., Russ C., Lo C.C., Leitner T., et al., Quantitative deep sequencing reveals dynamic HIV-1 escape and large population shifts during CCR5 antagonist therapy in vivo, PLoS ONE (2009) 4:e5683. [CrossRef] [PubMed]
  • Verdaguer N., Mateu M.G., Andreu D., Giralt E., Domingo E., Fita I., Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction, EMBO J. (1995) 14:1690–1696. [PubMed]
  • Vignuzzi M., Stone J.K., Arnold J.J., Cameron C.E., Andino R., Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population, Nature (2006) 439:344–348. [CrossRef] [PubMed]
  • Villefroy P., Letourneur F., Coutsinos Z., Mortara L., Beyer C., Gras-Masse H., et al., SIV escape mutants in rhesus macaques vaccinated with NEF-derived lipopeptides and challenged with pathogenic SIVmac251, Virol. J. (2006) 3:65. [CrossRef] [PubMed]
  • Wang C., Mitsuya Y., Gharizadeh B., Ronaghi M., Shafer R.W., Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance, Genome Res. (2007) 17:1195–1201. [CrossRef] [PubMed]
  • Weaver S.C., Evolutionary influences in arboviral disease, Curr. Top. Microbiol. Immunol. (2006) 299:285–314. [CrossRef] [PubMed]
  • Webster D.R., Hekele A.G., Lauring A.S., Fisher K.F., Li H., Andino R., De Risi J.L., An enhanced single base extension technique for the analysis of complex viral populations, PLoS ONE (2009) 16:e7453. [CrossRef]
  • Woo P.C., Lau S.K., Yuen K.Y., Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections, Curr. Opin. Infect. Dis. (2006) 19:401–407. [CrossRef] [PubMed]
  • Woolhouse M.E., Webster J.P., Domingo E., Charlesworth B., Levin B.R., Biological and biomedical implications of the co-evolution of pathogens and their hosts, Nat. Genet. (2002) 32:569–577. [CrossRef] [PubMed]
  • Zhang C.Y., Wei J.F., He S.H., Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups, BMC Microbiol. (2006) 6:88. [CrossRef] [PubMed]