Free access
Issue
Vet. Res.
Volume 41, Number 5, September–October 2010
Number of page(s) 12
DOI http://dx.doi.org/10.1051/vetres/2010038
Published online 15 June 2010
How to cite this article Vet. Res. (2010) 41:66
  • Barnard D.L., Animal models for the study of influenza pathogenesis and therapy, Antiviral Res. (2009) 82:A110–122. [CrossRef] [PubMed]
  • Belser J.A., Bridges C.B., Katz J.M., Tumpey T.M., Past, present, and possible future human infection with influenza virus A subtype H7, Emerg. Infect. Dis. (2009) 15:859–865. [CrossRef] [PubMed]
  • Belser J.A., Szretter K.J., Katz J.M., Tumpey T.M., Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses, Adv. Virus Res. (2009) 73:55–97. [CrossRef] [PubMed]
  • Boon A.C., deBeauchamp J., Hollmann A., Luke J., Kotb M., Rowe S., et al., Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice, J. Virol. (2009) 83:10417–10426. [CrossRef] [PubMed]
  • European Commission, CE, Commission Decision 437/2006/CE of 4 August 2006 approving a Diagnostic Manual for avian influenza as provided for in Council Directive 2005/94/EC, Official Journal of the European Union, 2006.
  • Fornek J.L., Gillim-Ross L., Santos C., Carter V., Ward J.M., Cheng L.I., et al., A single amino acid substitution in a polymerase protein of an H5N1 influenza virus is associated with systemic infection and impaired T cell activation in mice, J. Virol. (2009) 83:11102–11115. [CrossRef] [PubMed]
  • Fouchier R.A., Schneeberger P.M., Rozendaal F.W., Broekman J.M., Kemink S.A., Munster V., et al., Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome, Proc. Natl. Acad. Sci. USA (2004) 101:1356–1361. [CrossRef]
  • Fouchier R., Kuiken T., Rimmelzwaan G., Osterhaus A., Global task force for influenza, Nature (2005) 435:419–420. [CrossRef] [PubMed]
  • Garten R.J., Davis C.T., Russell C.A., Shu B., Lindstrom S., Balish A., et al., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans, Science (2009) 325:197–201. [CrossRef] [PubMed]
  • Harder T.C., Vahlenkamp T.W., Influenza virus infections in dogs and cats, Vet. Immunol. Immunopathol. (2010) 134:54–60. [CrossRef] [PubMed]
  • Harlow E., Lane D., Antibodies: a laboratory manual, Cold Spring Harbor Laboratory, 1988.
  • Hartley C.A., Reading P.C., Ward A.C., Anders E.M., Changes in the hemagglutinin molecule of influenza type A (H3N2) virus associated with increased virulence for mice, Arch. Virol. (1997) 142:75–88. [CrossRef] [PubMed]
  • Hatta M., Kawaoka Y., Molecular determinants associated with high virulence of influenza A virus, Tanpakushitsu Kakusan Koso (2007) 10:1237–1241.
  • Hoffmann E., Stech J., Guan Y., Webster R.G., Perez D.R., Universal primer set for the full-length amplification of all influenza A viruses, Arch. Virol. (2001) 146:2275–2289. [CrossRef] [PubMed]
  • Ibricevic A., Pekosz A., Walter M.J., Newby C., Battaile J.T., Brown E.G., et al., Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells, J. Virol. (2006) 80:7469–7480. [CrossRef] [PubMed]
  • Kalthoff D., Globig A., Beer M., Highly pathogenic avian influenza as a zoonotic agent, Vet. Microbiol. (2010) 140:237–245. [CrossRef] [PubMed]
  • Katz J.M., Lu X., Tumpey T.M., Smith C.B., Shaw M.W., Subbarao K., Molecular correlates of influenza A H5N1 virus pathogenesis in mice, J. Virol. (2000) 74:10807–10810. [CrossRef] [PubMed]
  • Keawcharoen J., Oraveerakul K., Kuiken T., Fouchier R.A., Amonsin A., Payungporn S., et al., Avian influenza H5N1 in tigers and leopards, Emerg. Infect. Dis. (2004) 10:2189–2191. [PubMed]
  • Kuiken T., Rimmelzwaan G., van Riel D., van Amerongen G., Baars M., Fouchier R., Osterhaus A., Avian H5N1 influenza in cats, Science (2004) 306:241. [CrossRef] [PubMed]
  • Lipatov A.S., Krauss S., Guan Y., Peiris M., Rehg J.E., Perez D.R., Webster R.G., Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001, J. Virol. (2003) 77:3816–3823. [CrossRef] [PubMed]
  • Maines T.R., Lu X.H., Erb S.M., Edwards L., Guarner J., Greer P.W., et al., Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals, J. Virol. (2005) 79:11788–11800. [CrossRef] [PubMed]
  • Matrosovich M., Stech J., Klenk H.D., Influenza receptors, polymerase and host range, Rev. Sci. Tech. (2009) 28:203–217. [PubMed]
  • Matrosovich M.N., Matrosovich T.Y., Gray T., Roberts N.A., Klenk H.D., Human and avian influenza viruses target different cell types in cultures of human airway epithelium, Proc. Natl. Acad. Sci. USA (2004) 101:4620–4624. [CrossRef]
  • Ning Z.Y., Luo M.Y., Qi W.B., Yu B., Jiao P.R., Liao M., Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry, Vet. Res. Commun. (2009) 33:895–903. [CrossRef] [PubMed]
  • Reed L.J., Muench H., A simple method of estimating fifty percent endpoints, Am. J. Hyg. (1938) 27:493–497.
  • Rigoni M., Shinya K., Toffan A., Milani A., Bettini F., Kawaoka Y., et al., Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice, Virology (2007) 364:28–35. [CrossRef] [PubMed]
  • Schulman J.L., The use of an animal model to study transmission of influenza virus infection, Am. J. Public Health Nations Health (1968) 58:2092–2096. [CrossRef] [PubMed]
  • Shinya K., Hamm S., Hatta M., Ito H., Ito T., Kawaoka Y., PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice, Virology (2004) 320:258–266. [CrossRef] [PubMed]
  • Shinya K., Hatta M., Yamada S., Takada A., Watanabe S., Halfmann P., et al., Characterization of a human H5N1 influenza A virus isolated in 2003, J. Virol. (2005) 79:9926–9932. [CrossRef] [PubMed]
  • Shinya K., Ebina M., Yamada S., Ono M., Kasai N., Kawaoka Y., Avian flu: influenza virus receptors in the human airway, Nature (2006) 440:435–436. [CrossRef] [PubMed]
  • Spackman E., Senne D.A., Myers T.J., Bulaga L.L., Garber L.P., Perdue M.L., et al., Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes, J. Clin. Microbiol. (2002) 40:3256–3260. [CrossRef] [PubMed]
  • Steel J., Lowen A.C., Mubareka S., Palese P., Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627 K or 627E/701 N, PLoS Pathog. (2009) 5:e1000252. [CrossRef] [PubMed]
  • Steel J., Staeheli P., Mubareka S., Garcia-Sastre A., Palese P., Lowen A.C., Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment, J. Virol. (2010) 84:21–26. [CrossRef] [PubMed]
  • Thanawongnuwech R., Amonsin A., Tantilertcharoen R., Damrongwatanapokin S., Theamboonlers A., Payungporn S., et al., Probable tiger-to-tiger transmission of avian influenza H5N1, Emerg. Infect. Dis. (2005) 11:699–701. [PubMed]
  • Trammell R.A., Toth L.A., Genetic susceptibility and resistance to influenza infection and disease in humans and mice, Expert Rev. Mol. Diagn. (2008) 8:515–529. [CrossRef] [PubMed]
  • Van der Laan J.W., Herberts C., Lambkin-Williams R., Boyers A., Mann A.J., Oxford J., Animal models in influenza vaccine testing, Expert Rev. Vaccines (2008) 7:783–793. [CrossRef] [PubMed]
  • Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y., Evolution and ecology of influenza A viruses, Microbiol. Rev. (1992) 56:152–179. [PubMed]
  • Wu R., Sui Z., Liu Z., Liang W., Yang K., Xiong Z., Xu D., Transmission of avian H9N2 influenza viruses in a murine model, Vet. Microbiol. (2010) 142:211–216. [CrossRef] [PubMed]
  • Zhou J., Sun W., Wang J., Guo J., Yin W., Wu N., et al., Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China, J. Virol. (2009) 83:8957–8964. [CrossRef] [PubMed]