Free access
Issue
Vet. Res.
Volume 41, Number 3, May–June 2010
Number of page(s) 16
DOI http://dx.doi.org/10.1051/vetres/2010004
Published online 18 January 2010
How to cite this article Vet. Res. (2010) 41:32
  • Abbassy M.M., Osman M., Marzouk A.S., West Nile virus (Flaviviridae: Flavivirus) in experimentally infected Argas ticks (Acari: Argasidae), Am. J. Trop. Med. Hyg. (1993) 48:726–737. [PubMed]
  • Alba A., Busquets N., Allepuz A., Abad F.X., Serrano E., Casal J., West Nile virus surveillance in Catalonia, 2007, Epidémiol. Santé Anim. (2008) 54:80–89.
  • Austin R.J., Whiting T.L., Anderson R.A., Drebot M.A., An outbreak of West Nile virus-associated disease in domestic geese (Anser anser domesticus) upon initial introduction to a geographic region, with evidence of bird to bird transmission, Can. Vet. J. (2004) 45:117–123. [PubMed]
  • Autorino G.L., Battisti A., Deubel V., Ferrari G., Forletta R., Giovannini A., , West Nile virus epidemic in horses, Tuscany region, Italy, Emerg. Infect. Dis. (2002) 8:1372–1378. [PubMed]
  • Bakonyi T., Ivanics E., Erdelyi K., Ursu K., Ferenczi E., Weissenbock H., Nowotny N., Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe, Emerg. Infect. Dis. (2006) 12:618–623. [PubMed]
  • Balança G., Gaidet N., Savini G., Vollot B., Foucart A., Reiter P., , Low West Nile virus circulation in wild birds in an area of recurring outbreaks in Southern France, Vector Borne Zoonotic Dis. (2009) 9:737–741. [CrossRef] [PubMed]
  • Balenghien T., Fouque F., Sabatier P., Bicout D.J., Horse, bird and human-seeking behaviour and seasonanl abundance of mosquitoes in a West Nile focus of southern France, J. Med. Entomol. (2006) 43:936–946. [CrossRef] [PubMed]
  • Bowman C., Gumel A.B., van den Driessche P., Wu J., Zhu H., A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol. (2005) 67:1107–1133. [CrossRef] [MathSciNet] [PubMed]
  • Bunning M.L., Bowen R.A., Cropp B., Sullivan K., Davis B., Komar N., , Experimental infection of horses with West Nile virus and their potential to infect mosquitoes and serve as amplifying hosts, Ann. N.Y. Acad. Sci. (2001) 951:338–339. [CrossRef]
  • Cernescu C., Nedelcu N.I., Tardei G., Ruta S., Tsai T.F., Continued transmission of West Nile virus to humans in southeastern Romania, 1997–1998, J. Infect. Dis. (2000) 181:710–712. [CrossRef] [PubMed]
  • Chevalier V., Lancelot R., Thiongane Y., Sall B., Diaite A., Mondet B., Rift valley fever in small ruminants, Senegal, 2003, Emerg. Infect. Dis. (2005) 11:1693–1700. [PubMed]
  • Chevalier V., Lancelot R., Diaite A., Mondet B., Sall B., De Lamballerie X., Serological assessment of West Nile fever virus activity in the pastoral system of Ferlo, Senegal, Ann. N.Y. Acad. Sci. (2006) 1081:216–225. [CrossRef]
  • Chevalier V., Lancelot R., Diaite A., Mondet B., De Lamballerie X., Use of sentinel chickens to study the transmission dynamics of West Nile virus in a sahelian ecosystem, Epidemiol. Infect. (2008) 136:525–528. [PubMed]
  • Chevalier V., Dupressoir A., Tran A., Diop Gottland C., Diallo M., , Environmental risk factors of West Nile infection of horses in the Senegal river basin, Epidemiol. Infect. (2010) (in press).
  • Chevalier V., Reynaud P., Lefrancois T., Durand B., Baillon F., Balanca G., , Predicting West Nile virus seroprevalence in wild birds in Senegal, Vector Borne Zoonotic Dis. (2009) 9:589–596. [CrossRef] [PubMed]
  • Cornel A.J., Jupp P.G., Blackburn N.K., Environmental temperature on the vector competence of Culex univittatus (Diptera: Culicidae) for West Nile virus, J. Med. Entomol. (1993) 30:449–456. [PubMed]
  • Cramp S., The birds of the Western Palearctic, Vol. 6, Oxford University Press, 1992.
  • Cramp S., The birds of the Western Palearctic, Vol. 7, Oxford University Press, 1993.
  • Cramp S., The birds of the Western Palearctic, Vol. 8, Oxford University Press, 1994.
  • Cruz-Pacheco G., Esteva L., Montano-Hirose J.A., Vargas C., Modelling the dynamics of West Nile virus, Bull. Math. Biol. (2005) 67:1157–1172. [CrossRef] [MathSciNet] [PubMed]
  • Dohm D., O’Guinn M., Turell M.J., Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus, J. Med. Entomol. (2002) 39:221–225. [CrossRef] [PubMed]
  • Durand B., Chevalier V., Pouillot R., Labie J., Marendat I., Murgue B., , West Nile virus outbreak in horses, Southern France, 2000: results of a serosurvey, Emerg. Infect. Dis. (2002) 8:777–782. [PubMed]
  • Durand B., Dauphin G., Zeller H., Labie J., Schuffenecker I., Murri S., , Serosurvey for West Nile virus in horses in Southern France, Vet. Rec. (2005) 157:711–713. [PubMed]
  • Erdelyi K., Ursu K., Ferenczi E., Szeredi L., Ratz F., Skare J., Bakonyi T., Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary, Vector Borne Zoonotic Dis. (2007) 7:181–188. [CrossRef] [PubMed]
  • Erickson S., Platt K., Tucker B., Evans R., Tiawsirisup S., Rowley W., The potential of Aedes triseriatus (Diptera: Culicidae) as an enzootic vector of West Nile virus, J. Med. Entomol. (2006) 43:966–970. [CrossRef] [PubMed]
  • Esteves A., Almeida A.P., Galao R.P., Parreira R., Piedade J., Rodrigues J.C., , West Nile virus in Southern Portugal, 2004, Vector Borne Zoonotic Dis. (2005) 5:410–413. [CrossRef] [PubMed]
  • Ezenwa V.O., Godsey M.S., King R.J., Guptill S.C., Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk, Proc. Biol. Sci. (2006) 273:109–117. [CrossRef] [PubMed]
  • Foppa I.M., Spielman A., Does reservoir host mortality enhance transmission of West Nile virus?, Theor. Biol. Med. Model. (2007) 4:17. [CrossRef] [PubMed]
  • Fyodorova M.V., Savage H.M., Lopatina J.V., Bulgakova T.A., Ivanitsky A.V., Platonova O.V., Platonov A.E., Evaluation of potential West Nile virus vectors in Volgograd region, Russia, 2003 (Diptera: Culicidae): species composition, bloodmeal host utilization, and virus infection rates of mosquitoes, J. Med. Entomol. (2006) 43:552–563. [CrossRef] [PubMed]
  • Gad A., el Said S., Soliman B., Hassan A., Shoukry A., Distribution and bionomics of Egyptian Culex univittatus (Theobald), J. Egypt Soc. Parasitol. (1987) 17:17–31. [PubMed]
  • Gad A., Feinsod F., Soliman B., Said S., Survival estimates for adult Culex pipiens in the Nile Delta, Acta Trop. (1989) 46:173–179. [CrossRef] [PubMed]
  • Hamer G.L., Walker E.D., Brawn J.D., Loss S.R., Ruiz M.O., Goldberg T.L. , , Rapid amplification of West Nile virus: the role of hatch-year birds, Vector Borne Zoonotic Dis. (2008) 8:57–67. [CrossRef] [PubMed]
  • Hartemink N.A., Davis S.A., Reiter P., Hubalek Z., Heesterbeek J.A., Importance of bird-to-bird transmission for the establishment of West Nile virus, Vector Borne Zoonotic Dis. (2007) 7:575–584. [CrossRef] [PubMed]
  • Hubalek Z., Halouzka J., West Nile fever – a reemerging mosquito-borne viral disease in Europe, Emerg. Infect. Dis. (1999) 5:643–650. [CrossRef] [PubMed]
  • Hubalek Z., Halouzka J., Juricova Z., Sikutova S., Rudolf I., Honza M., , Serologic survey of birds for West Nile flavivirus in southern Moravia (Czech Republic), Vector Borne Zoonotic Dis. (2008) 8:659–666. [CrossRef] [PubMed]
  • Jourdain E., Gauthier-Clerc M., Sabatier P., Grege O., Greenland T., Leblond A., , Magpies as hosts for West Nile virus, Southern France, Emerg. Infect. Dis. (2008) 14:158–160. [CrossRef] [PubMed]
  • Jourdain E., Zeller H.G., Sabatier P., Murri S., Kayser Y., Greenland T., , Prevalence of West Nile virus neutralizing antibodies in wild birds from the Camargue area, Southern France, J. Wildl. Dis. (2008) 44:766–771. [PubMed]
  • Jupp P., The susceptibility of four South African species of Culex to West Nile and Sindbis viruses by two different infecting methods, Mosq. News (1976) 36:166–173.
  • Jupp P.G., McIntosh B.M., Quantitative experiments on the vector capability of Culex (Culex) univittatus Theobald with West Nile and Sindbis viruses, J. Med. Entomol. (1970) 7:371–373. [PubMed]
  • Jupp P.G., Laboratory studies on the transmission of West Nile virus by Culex (Culex) univittatus Theobald; factors influencing the transmission rate, J. Med. Entomol. (1974) 11:455–458. [PubMed]
  • Juricova Z., Pinowski J., Literak I., Hahm K.H., Romanowski J., Antibodies to alphavirus, flavivirus, and bunyavirus arboviruses in house sparrows (Passer domesticus) and tree sparrows (P. montanus) in Poland, Avian Dis. (1998) 42:182–185. [CrossRef] [PubMed]
  • Kecsemeti S., Bajmocy E., Bacsadi A., Kiss I., Bakoni T., Encephalitis due to West Nile virus in a sheep, Vet. Rec. (2007) 161:568–569. [CrossRef] [PubMed]
  • Komar N., Langevin S., Hinten S., Nemeth N., Edwards E., Hettler D., , Experimental infection of North American birds with the New York 1999 strain of West Nile virus, Emerg. Infect. Dis. (2003) 9:311–322. [PubMed]
  • Lecollinet S., Lefrançois T., Durand B., Leblond A., Dauphin G., de Goer J., Zientara S., Surveillance de l’infection équine à virus West-Nile en France: 2000–2007, Epidémiol. Santé Anim. (2008) 54:69–80.
  • Lewis M., Renclawowicz J., van den Driessche P., Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol. (2006) 68:3–23. [CrossRef] [MathSciNet] [PubMed]
  • Lopez G., Jimenez-Clavero M.A., Tejedor C.G., Soriguer R., Figuerola J., Prevalence of West Nile virus neutralizing antibodies in Spain is related to the behavior of migratory birds, Vector Borne Zoonotic Dis. (2008) 8:615–621. [CrossRef] [PubMed]
  • Loss S.R., Hamer G.L., Goldberg T.L., Ruiz M.O., Kitron U.D., Walker E.D., Brawn J.D., Nestling passerines are not important hosts for amplification of West Nile virus in Chicago, Illinois, Vector Borne Zoonotic Dis. (2009) 9:13–18. [CrossRef] [PubMed]
  • Ludwig G.V., Cook R.S., McLean R.G., Francy D.B., Viremic enhancement due to transovarially acquired antibodies to St. Louis encephalitis virus in birds, J. Wildl. Dis. (1986) 22:326–334. [PubMed]
  • Mailles A., Dellamonica P., Zeller H., Durand J.P., Zientara S., Gofette R., , Human and equine West-Nile virus infections in France, August–September 2003, Eurosurveillance (2003) 7:2312.
  • Moller A.P., Senescence in relation to latitude and migration in birds, J. Evol. Biol. (2007) 20:750–757. [CrossRef] [PubMed]
  • Mondet B., Diaïté A., Fall A.G., Chevalier V., Relations entre la pluviométrie et le risque de transmission virale par les moustiques : cas du virus de la Rift Valley fever (RVF) dans le Ferlo (Sénégal), Environnement, Risques et Santé (2005) 4:125–129.
  • Moreau R.E., The Palaearctic–African bird migration systems, Academic Press, London, UK and New York, NY, 1972.
  • Morel G., Contribution à la synéologie des oiseaux du Sahel sénégalais, Mém. ORSTOM (1968) 179.
  • Morel G., Morel M., Les oiseaux de Sénégambie, Paris, ORSTOM, 1990.
  • Mumcuoglu K.Y., Banet-Noach C., Malkinson M., Shalom U., Galun R., Argasid ticks as possible vectors of West Nile virus in Israel, Vector Borne Zoonotic Dis. (2005) 5:65–71. [CrossRef] [PubMed]
  • Murgue B., Murri S., Zientara S., Durand B., Durand J.P., Zeller H., West Nile outbreak in horses in Southern France, 2000: the return after 35 years, Emerg. Infect. Dis. (2001) 7:692–696. [CrossRef] [PubMed]
  • Murgue B., Zeller H., Deubel V., The ecology and epidemiology of West Nile virus in Africa, Europe and Asia, Curr. Top. Microbiol. Immunol. (2002) 267:195–221. [PubMed]
  • Nasci R.S., Savage H.M., White D.J., Miller J.R., Cropp B.C., Godsey M.S., , West Nile virus in overwintering Culex mosquitoes, New York City, 2000, Emerg. Infect. Dis. (2001) 7:742–744. [CrossRef] [PubMed]
  • Nemeth N.M., Oesterle P.T., Bowen R.A., Passive immunity to West Nile virus provides limited protection in a common passerine species, Am. J. Trop. Med. Hyg. (2008) 79:283–290. [PubMed]
  • Petersen L.R., Roerigh J.T., West Nile virus: a reemerging global pathogen, Rev. Biomed. (2001) 12:208–216.
  • Platonov A.E., Shipulin G.A., Shipulina O.Y., Tyutyunnik E.N., Frolochkina T.I., Lanciotti R.S., , Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999, Emerg. Infect. Dis. (2001) 7:128–132. [CrossRef] [PubMed]
  • Platonov A.E., Fedorova M.V., Karan L.S., Shopenskaya T.A., Platonova O.V., Zhuravlev V.I., Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: Culicidae) bionomics, Parasitol. Res. (2008) 103(Suppl. 1):S45–S53. [CrossRef] [PubMed]
  • Poncon N., Toty C., L’Ambert G., le Goff G., Brengues C., Schaffner F., Fontenille D., Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France, Med. Vet. Entomol. (2007) 21:350–357. [CrossRef] [PubMed]
  • R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0, 2009.
  • Rappole J.H., Compton B.W., Leimgruber P., Robertson J., King D.I., Renner S.C., Modeling movement of West Nile virus in the Western hemisphere, Vector Borne Zoonotic Dis. (2006) 6:128–139. [CrossRef] [PubMed]
  • Rizzoli A., Rosa R., Rosso F., Buckley A., Gould E.A., West Nile virus circulation detected in northern Italy in sentinel chickens, Vector Borne Zoonotic Dis. (2007) 3:411–417. [CrossRef]
  • Savage H.M., Ceianu C., Nicolescu G., Karabatsos N., Lanciotti R., Vladimirescu A., , Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes, Am. J. Trop. Med. Hyg. (1999) 61:600–611. [PubMed]
  • Schmaljohann H., Liechti F., Bruderer B., Songbird migration across the Sahara: the non-stop hypothesis rejected!, Proc. Biol. Sci. (2007) 274:735–739. [CrossRef] [PubMed]
  • Summers-Smith J., The sparrows: a study of the genus Passer, A&C Black Publishers Ltd, 1988, p. 342.
  • Tiawsirisup S., Platt K., Evans R., Rowley W., Susceptibility of Ochlerotatus trivittatus (Coq.), Aedes albopictus (Skuse), and Culex pipiens (L.) to West Nile virus infection, Vector Borne Zoonotic Dis. (2004) 4:190–197. [PubMed]
  • Tsai T.F., Factors in the changing epidemiology of Japanese encephalitis and West Nile fever, in: Saluzzo R.F., Dodet B. (Eds.), Factors in the emergence of arbovirus diseases, Elsevier, Paris, 1997, pp. 179–189.
  • Tsai T.F., Popovici F., Cernescu C., Campbell G.L., Nedelcu N.I., West Nile encephalitis epidemic in southeastern Romania, Lancet (1998) 352:767–771. [CrossRef] [PubMed]
  • Ward M.P., Epidemic West Nile virus encephalomyelitis: a temperature-dependent, spatial model of disease dynamics, Prev. Vet. Med. (2005) 71:253–264. [CrossRef] [PubMed]
  • Weinberger M., Pitlik S.D., Gandacu D., Lang R., Nassar F., Ben David D., , West Nile fever outbreak, Israel, 2000: epidemiologic aspects, Emerg. Infect. Dis. (2001) 7:686–691. [CrossRef] [PubMed]
  • Wonham M.J., de-Camino-Beck T., Lewis M.A., An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. Biol. Sci. (2004) 271:501–507. [CrossRef] [PubMed]
  • Zeller H.G., Schuffenecker I., West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas, Eur. J. Clin. Microbiol. Infect. Dis. (2004) 23:147–156. [CrossRef] [PubMed]
  • Zou L., Miller S.N., Schmidtmann E.T., A GIS tool to estimate West Nile virus risk based on a degree-day model, Environ. Monit. Assess. (2007) 129:413–420. [CrossRef] [PubMed]