Open Access
Issue
Vet. Res.
Volume 41, Number 2, March–April 2010
Number of page(s) 12
DOI http://dx.doi.org/10.1051/vetres/2009072
Published online 27 November 2009
How to cite this article Vet. Res. (2010) 41:23
  • Albiger B., Dahlberf S., Henriques-Normak B., Normak S., Role of the innate immune system in host defence against bacterial infections: focus in Toll-like receptors, J. Intern. Med. (2007) 262:511–528. [CrossRef]
  • Arce C., Ramírez-Boo M., Lucena C., Garrido J.J., Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium, Comp. Immunol. Microbiol. Infect. Dis. (2008) Doi:10.1016/j.cimid.2008.08.003.
  • Boyen F., Haesebrouck F., Maes D., Van Immerseel F., Ducatelle R., Pasmans F. , Non-typhoidal Salmonella infections in pigs: a closer look at epidemiology, pathogenesis and control, Vet. Microbiol. (2008) 130:1–19. [CrossRef] [PubMed]
  • Bueno S.M., González P.A., Schwebach J.R., Kalergis A.M., T cell immunity evasion by virulent Salmonella enterica, Immunol. Lett. (2007) 111:14–20. [CrossRef] [PubMed]
  • Chaouche-Drider N., Kaparakis M., Karrar A., Fernandez M.I., Carneiro L.A., Viala J., et al., A commensal Helicobacter sp. of the rodent intestinal flora activates TLR2 and NOD1 responses in epithelial cells, PLoS ONE (2009) 4:e5396. [CrossRef] [PubMed]
  • Darwin K.H., Miller V.L., Molecular basis of the interaction of Salmonella with the intestinal mucosa, Clin. Microbiol. Rev. (1999) 12:405–428. [PubMed]
  • Eckmann L., Kagnoff M.F., Cytokines in host defense against Salmonella, Microbes Infect. (2001) 3:1191–1200. [CrossRef] [PubMed]
  • Eckmann L., Sensor molecules in intestinal innate immunity against bacterial infection, Curr. Opin. Gastroenterol. (2006) 22:95–101. [CrossRef] [PubMed]
  • Fantuzzi G., Dinarello C.A., Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1), J. Clin. Immunol. (1999) 19:1–11. [CrossRef] [PubMed]
  • Finlay B.B., Brumell J.H., Salmonella interactions with host cells: in vitro to in vivo, Philos. Trans. R. Soc. Lond. B Biol. Sci. (2000) 355:623–631. [CrossRef] [PubMed]
  • Garcia-Feliz C., Collazos J.A., Carvajal A., Vidal A.B., Aladuena A., Ramiro R., et al., Salmonella enterica infections in Spanish swine fattening units, Zoonoses Public Health (2007) 54:294–300. [CrossRef] [PubMed]
  • Grassl G.A., Finlay B.B., Pathogenesis of enteric Salmonella infections, Curr. Opin. Gastroenterol. (2008) 24:22–26. [CrossRef] [PubMed]
  • Hyland K.A., Kohrt L., Vulchanova L., Murtaugh M.P., Mucosal innate immune response to intragastric infection by Salmonella enterica serovar Choleraesuis, Mol. Immunol. (2006) 43:1890–1899. [CrossRef] [PubMed]
  • Jepson M.A., Clark M.A., The role of M cells in Salmonella infection, Microbes Infect. (2001) 3:1183–1190. [CrossRef] [PubMed]
  • Keshav S., Paneth cells: leukocyte-like mediators of innate immunity in the intestine, J. Leukoc. Biol. (2006) 80:500–508. [CrossRef] [PubMed]
  • Krishnan J., Selvarajoo K., Tsuchiya M., Lee G., Choi S., Toll-like receptor signal transduction, Exp. Mol. Med. (2007) 39:421–438. [PubMed]
  • Lalmanach A.-C., Lantier F., Host cytokine response and resistance to Salmonella infection, Microbes Infect. (1999) 1:719–726. [CrossRef] [PubMed]
  • Lara-Tejedo M., Sutterwala F.S., Ogura Y., Grant E.P., Bertin J., Coyle A.J., et al., Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis, J. Exp. Med. (2006) 203:1407–1412. [CrossRef] [PubMed]
  • Livak K.J., Schmittgen T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method, Methods (2001) 25:402–408. [CrossRef] [PubMed]
  • Meurens F., Berri M., Auray G., Melo S., Levast B., Virlogeus-Payant I., et al., Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops, Vet. Res. (2009) 40:05. [CrossRef] [EDP Sciences]
  • Meyerholz D.K., Stabel T.J., Ackermann M.R., Carlson S.A., Jones B.D., Pohlenz J., Early epithelial invasion by Salmonella enterica serovar Typhimurium DT104 in the swine ileum, Vet. Pathol. (2002) 39:712–720. [CrossRef] [PubMed]
  • Meyland E., Tschopp J., Karin M., Intracellular pattern recognition receptors in the host response, Nature (2006) 442:39–44. [CrossRef] [PubMed]
  • Monack D.M., Hersh D., Ghori N., Bouley D., Zychlinsky A., Falkow S., Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model, J. Exp. Med. (2000) 192:249–258. [CrossRef] [PubMed]
  • Niess J., Reinecker H., Dendritic cells in the recognition of intestinal microbiota, Cell. Microbiol. (2006) 8:558–564. [CrossRef] [PubMed]
  • Niewold T.A., Veldhuizen E.J., van der Meulen J., Haagsman H.P., de Wit A.A., Smits M.A., et al., The early transcriptional response of pig small intestinal mucosa to invasion by Salmonella enterica serovar Typhimurium DT104, Mol. Immunol. (2007) 44:1316–1322. [CrossRef] [PubMed]
  • Oswald I.P., Role of intestinal epithelial cells in the innate immune defence of the pig intestine, Vet. Res. (2006) 37:359–368. [CrossRef] [EDP Sciences] [PubMed]
  • Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P., Determination of stable housekeeping genes differentially regulated target genes, and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations, Biotechnol. Lett. (2004) 26:509–515. [CrossRef] [PubMed]
  • Skjolaas K.A., Burkey T.E., Dritz S.S., Minton J.E., Effects of Salmonella enterica serovars Typhimurium (ST) and Choleraesuis (SC) on chemokine and cytokine expression in swine ileum and jejunal epithelial cells, Vet. Immunol. Immunopathol. (2006) 111:199–209. [CrossRef] [PubMed]
  • Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol. (2002) 3:RESEARCH0034. [CrossRef]
  • Veldhuizen E.J., Hendriks H.G., Hogenkamp A., van Dijk A., Gaastra W., Tooten P.C., Haagsman H.P., Differential regulation of porcine beta-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I, Vet. Immunol. Immunopathol. (2006) 114:94–102. [CrossRef] [PubMed]
  • Veldhuizen E.J., van Dijk A., Tersteeg M.H., Kalkhove S.I., van der Meulen J., Niewold T.A., Haagsman H.P., Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection, Mol. Immunol. (2007) 44:276–283. [CrossRef] [PubMed]
  • Veldhuizen E.J.A., Koomen I., Ultee T., van Dijk A., Haagsman H.P., Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line, Vet. Microbiol. (2009) 136:69–75. [CrossRef] [PubMed]
  • Wick M.J., Living in the danger zone: innate immunity to Salmonella, Curr. Opin. Microbiol. (2004) 7:51–57. [CrossRef] [PubMed]
  • Yang D., Biragyn A., Kwak L.W., Oppenheim J.J., Mammalian defensins in immunity: more than just microbicidal, Trends Immunol. (2002) 23:291–296. [CrossRef] [PubMed]
  • Zeng H., Carlson A.Q., Guo Y., Yu Y., Collier-Hyams L.S., Madara J.L., et al., Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella, J. Immunol. (2003) 171:3668–3674. [PubMed]