Free access
Issue
Vet. Res.
Volume 41, Number 1, January-February 2010
Number of page(s) 14
DOI http://dx.doi.org/10.1051/vetres/2009058
Published online 14 October 2009
How to cite this article Vet. Res. (2010) 41:10
References of  Vet. Res. (2010) 41:10
  1. Andonegui G., Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection, J. Clin. Invest. (2009) 119:1921 [PubMed].
  2. Bannerman D.D., Paape M.J., Hare W.R., Sohn E.J., Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge, J. Dairy Sci. (2003) 86:3128–3137 [PubMed].
  3. Bar D., Tauer L.W., Bennett G., Gonzalez R.N., Hertl J.A., Schukken Y.H., et al., The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming, J. Dairy Sci. (2008) 91:2205–2214 [CrossRef] [PubMed].
  4. Blum J.W., Dosogne H., Hoeben D., Vangroenweghe F., Hammon H.M., Bruckmaier R.M., Burvenich C., Tumor necrosis factor-alpha and nitrite/nitrate responses during acute mastitis induced by Escherichia coli infection and endotoxin in dairy cows, Domest. Anim. Endocrinol. (2000) 19:223–235 [CrossRef] [PubMed].
  5. Bouchard L., Blais S., Desrosiers C., Zhao X., Lacasse P., Nitric oxide production during endotoxininduced mastitis in the cow, J. Dairy Sci. (1999) 82:2574–2581 [PubMed].
  6. Boulanger V., Zhao X., Lauzon K., Lacasse P., Effects of nitric oxide on bovine polymorphonuclear functions, Can. J. Vet. Res. (2007) 71:52–58 [PubMed].
  7. Doerschuk C.M., NO and neutrophils during sepsis: NO says “Yes” to sequestration but “No” to migration, Am. J. Respir. Crit. Care Med. (2004) 170:205–206 [CrossRef] [PubMed].
  8. Fitzgerald D.C., Meade K.G., McEvoy A.N., Lillis L., Murphy E.P., MacHugh D.E., Baird A.W., Tumour necrosis factor-[alpha] (TNF-[alpha]) increases nuclear factor [kappa]B (NF[kappa]B) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells, Vet. Immunol. Immunopathol. (2007) 116:59–68 [CrossRef] [PubMed].
  9. Godaly G., Hang L., Frendeus B., Svanborg C., Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice, J. Immunol. (2000) 165:5287–5294 [PubMed].
  10. Gonen E., Vallon-Eberhard A., Elazar S., Harmelin A., Brenner O., Rosenshine I., et al., Toll-like receptor 4 is needed to restrict the invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine model of acute mastitis, Cell. Microbiol. (2007) 9:2826–2838 [CrossRef] [PubMed].
  11. Halasa T., Huijps K., Osteras O., Hogeveen H., Economic effects of bovine mastitis and mastitis management: a review, Vet. Q. (2007) 29:18–31 [PubMed].
  12. Hang L., Haraoka M., Agace W.W., Leffier H., Burdick M., Strieter R., Svanborg C., Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract, J. Immunol. (1999) 162:3037–3044 [PubMed].
  13. Hang L., Frendéus B., Godaly G., Svanborg C., Interleukin 8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis, J. Infect. Dis. (2000) 182:1738–1748 [CrossRef] [PubMed].
  14. Hollingsworth J.W., Chen B.J., Brass D.M., Berman K., Gunn M.D., Cook D.N., Schwartz D.A., The critical role of hematopoietic cells in lipopolysaccharide-induced airway inflammation, Am. J. Respir. Crit. Care Med. (2005) 171:806–813 [CrossRef] [PubMed].
  15. Lahouassa H., Moussay E., Rainard P., Riollet C., Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli, Cytokine (2007) 38:12–21 [CrossRef] [PubMed].
  16. Lahouassa H., Rainard P., Caraty A., Riollet C., Identification and characterization of a new interleukin-8 receptor in bovine species, Mol. Immunol. (2008) 45:1153–1164 [CrossRef] [PubMed].
  17. Lee J.W., Bannerman D.D., Paape M.J., Huang M.K., Zhao X., Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR, Vet. Res. (2006) 37:219–229 [CrossRef] [PubMed] [EDP Sciences].
  18. McClenahan D.J., Sotos J.P., Czuprynski C.J., Cytokine response of bovine mammary gland epithelial cells to Escherichia coli, coliform culture filtrate, or lipopolysaccharide, Am. J. Vet. Res. (2005) 66:1590–1597 [CrossRef] [PubMed].
  19. Napimoga M.H., Vieira S.M., Dal-Secco D., Freitas A., Souto F.O., Mestriner F.L., et al., Peroxisome proliferator-activated receptor-{gamma} ligand, 15-deoxy-{Delta}12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway, J. Immunol. (2008) 180:609–617 [PubMed].
  20. Notebaert S., Carlsen H., Janssen D., Vandenabeele P., Blomhoff R., Meyer E., In vivo imaging of NF-kappaB activity during Escherichia coli-induced mammary gland infection, Cell. Microbiol. (2008) 10:1249–1258 [CrossRef] [PubMed].
  21. Notebaert S., Demon D., Vanden Berghe T., Vandenabeele P., Meyer E., Inflammatory mediators in Escherichia coli-induced mastitis in mice, Comp. Immunol. Microbiol. Infect. Dis. (2008) 31:551–565 [CrossRef] [PubMed].
  22. Olde Riekerink R.G., Barkema H.W., Kelton D.F., Scholl D.T., Incidence rate of clinical mastitis on Canadian dairy farms, J. Dairy Sci. (2008) 91:1366–1377 [CrossRef] [PubMed].
  23. Onoda M., Inano H., Localization of nitric oxide synthases and nitric oxide production in the rat mammary gland, J. Histochem. Cytochem. (1998) 46:1269–1278 [PubMed].
  24. Paape M.J., Bannerman D.D., Zhao X., Lee J.W., The bovine neutrophil: structure and function in blood and milk, Vet. Res. (2003) 34:597–627 [CrossRef] [PubMed] [EDP Sciences].
  25. Paape M., Mehrzad J., Zhao X., Detilleux J., Burvenich C., Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes, J. Mammary Gland Biol. Neoplasia (2002) 7:109–121 [CrossRef] [PubMed].
  26. Persson K., Colditz I.G., Flapper P., Franklin N.A., Seow H.F., Cytokine-induced inflammation in the ovine teat and udder, Vet. Immunol. Immunopathol. (1996) 53:73–85 [CrossRef] [PubMed].
  27. Rainard P., Riollet C., Innate immunity of the bovine mammary gland, Vet. Res. (2006) 37:369–400 [CrossRef] [PubMed] [EDP Sciences].
  28. Rambeaud M., Clift R., Pighetti G.M., Association of a bovine CXCR2 gene polymorphism with neutrophil survival and killing ability, Vet. Immunol. Immunopathol. (2006) 111:231–238 [CrossRef] [PubMed].
  29. Reutershan J., Morris M.A., Burcin T.L., Smith D.F., Chang D., Saprito M.S., Ley K., Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung, J. Clin. Invest. (2006) 116:695–702 [CrossRef] [PubMed].
  30. Rios-Santos F., Alves-Filho J.C., Souto F.O., Spiller F., Freitas A., Lotufo C.M., et al., Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide, Am. J. Respir. Crit. Care Med. (2007) 175:490–497 [CrossRef] [PubMed].
  31. Schmitz S., Pfaf. M.W., Meyer H.H., Bruckmaier R.M., Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis, Domest. Anim. Endocrinol. (2004) 26:111–126 [CrossRef] [PubMed].
  32. Shpigel N.Y., Winkler M., Ziv G., Saran A., Clinical, bacteriological and epidemiological aspects of clinical mastitis in Israeli dairy herds, Prev. Vet. Med. (1998) 35:1–9 [CrossRef] [PubMed].
  33. Shuster D.E., Kehrli M.E. Jr., Administration of recombinant human interleukin 1 receptor antagonist during endotoxin-induced mastitis in cows, Am. J. Vet. Res. (1995) 56:313–320 [PubMed].
  34. Shuster D.E., Lee E.K., Kehrli M.E. Jr., Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation, Am. J. Vet. Res. (1996) 57:1569–1575 [PubMed].
  35. Svensson M., Irjala H., Svanborg C., Godaly G., Effects of epithelial and neutrophil CXCR2 on innate immunity and resistance to kidney infection, Kidney Int. (2008) 74:81–90 [CrossRef] [PubMed].
  36. Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K., Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model, J. Dairy Sci. (2009) 92:117–129 [CrossRef] [PubMed].
  37. Van Rooijen N., Sanders A., Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications, J. Immunol. Methods (1994) 174:83–93 [CrossRef] [PubMed].
  38. Vels L., Rontved C.M., Bjerring M., Ingvartsen K.L., Cytokine and acute phase protein gene expression in repeated liver biopsies of dairy cows with a lipopolysaccharide-induced mastitis, J. Dairy Sci. (2009) 92:922–934 [CrossRef] [PubMed].
  39. Voisin M.-B., Woodfin A., Nourshargh S., Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo, Arterioscler. Thromb. Vasc. Biol. (2009) 29:1193–1199 [CrossRef] [PubMed].
  40. Wall R., Powell A., Sohn E., Foster-Frey J., Bannerman D., Paape M., Enhanced host immune recognition of mastitis causing Escherichia coli in CD-14 transgenic mice, Anim. Biotechnol. (2009) 20:1–14 [CrossRef] [PubMed].
  41. Waller K.P., Modulation of endotoxin-induced inflammation in the bovine teat using antagonists/inhibitors to leukotrienes, platelet activating factor and interleukin 1 beta, Vet. Immunol. Immunopathol. (1997) 57:239–251 [CrossRef] [PubMed].
  42. Watanabe A., Yagi Y., Shiono H., Yokomizo Y., Effect of intramammary infusion of tumour necrosis factor-alpha on milk protein composition and induction of acute-phase protein in the lactating cow, J. Vet. Med. B Infect. Dis. Vet. Public Health (2000) 47:653–662 [PubMed].
  43. Yang W., Zerbe H., Petzl W., Brunner R.M., Gunther J., Draing C., et al., Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder, Mol. Immunol. (2008) 45:1385–1397 [CrossRef] [PubMed].
  44. Youngerman S.M., Saxton A.M., Oliver S.P., Pighetti G.M., Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle, J. Dairy Sci. (2004) 87:2442–2448 [PubMed].